Misplaced Pages

Rademacher distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Discrete probability distribution
Rademacher
Support k { 1 , 1 } {\displaystyle k\in \{-1,1\}\,}
PMF f ( k ) = { 1 / 2 if  k = 1 , 1 / 2 if  k = + 1 , 0 otherwise. {\displaystyle f(k)=\left\{{\begin{matrix}1/2&{\mbox{if }}k=-1,\\1/2&{\mbox{if }}k=+1,\\0&{\mbox{otherwise.}}\end{matrix}}\right.}
CDF F ( k ) = { 0 , k < 1 1 / 2 , 1 k < 1 1 , k 1 {\displaystyle F(k)={\begin{cases}0,&k<-1\\1/2,&-1\leq k<1\\1,&k\geq 1\end{cases}}}
Mean 0 {\displaystyle 0\,}
Median 0 {\displaystyle 0\,}
Mode N/A
Variance 1 {\displaystyle 1\,}
Skewness 0 {\displaystyle 0\,}
Excess kurtosis 2 {\displaystyle -2\,}
Entropy ln ( 2 ) {\displaystyle \ln(2)\,}
MGF cosh ( t ) {\displaystyle \cosh(t)\,}
CF cos ( t ) {\displaystyle \cos(t)\,}

In probability theory and statistics, the Rademacher distribution (which is named after Hans Rademacher) is a discrete probability distribution where a random variate X has a 50% chance of being +1 and a 50% chance of being −1.

A series (that is, a sum) of Rademacher distributed variables can be regarded as a simple symmetrical random walk where the step size is 1.

Mathematical formulation

The probability mass function of this distribution is

f ( k ) = { 1 / 2 if  k = 1 , 1 / 2 if  k = + 1 , 0 otherwise. {\displaystyle f(k)=\left\{{\begin{matrix}1/2&{\mbox{if }}k=-1,\\1/2&{\mbox{if }}k=+1,\\0&{\mbox{otherwise.}}\end{matrix}}\right.}

In terms of the Dirac delta function, as

f ( k ) = 1 2 ( δ ( k 1 ) + δ ( k + 1 ) ) . {\displaystyle f(k)={\frac {1}{2}}\left(\delta \left(k-1\right)+\delta \left(k+1\right)\right).}

Bounds on sums of independent Rademacher variables

There are various results in probability theory around analyzing the sum of i.i.d. Rademacher variables, including concentration inequalities such as Bernstein inequalities as well as anti-concentration inequalities like Tomaszewski's conjecture.

Concentration inequalities

Let {xi} be a set of random variables with a Rademacher distribution. Let {ai} be a sequence of real numbers. Then

Pr ( i x i a i > t | | a | | 2 ) e t 2 2 {\displaystyle \Pr \left(\sum _{i}x_{i}a_{i}>t||a||_{2}\right)\leq e^{-{\frac {t^{2}}{2}}}}

where ||a||2 is the Euclidean norm of the sequence {ai}, t > 0 is a real number and Pr(Z) is the probability of event Z.

Let Y = Σ xiai and let Y be an almost surely convergent series in a Banach space. The for t > 0 and s ≥ 1 we have

Pr ( | | Y | | > s t ) [ 1 c Pr ( | | Y | | > t ) ] c s 2 {\displaystyle \Pr \left(||Y||>st\right)\leq \left^{cs^{2}}}

for some constant c.

Let p be a positive real number. Then the Khintchine inequality says that

c 1 [ | a i | 2 ] 1 2 ( E [ | a i x i | p ] ) 1 p c 2 [ | a i | 2 ] 1 2 {\displaystyle c_{1}\left^{\frac {1}{2}}\leq \left(E\left\right)^{\frac {1}{p}}\leq c_{2}\left^{\frac {1}{2}}}

where c1 and c2 are constants dependent only on p.

For p ≥ 1, c 2 c 1 p . {\displaystyle c_{2}\leq c_{1}{\sqrt {p}}.}

Tomaszewski’s conjecture

In 1986, Bogusław Tomaszewski proposed a question about the distribution of the sum of independent Rademacher variables. A series of works on this question culminated into a proof in 2020 by Nathan Keller and Ohad Klein of the following conjecture.

Conjecture. Let X = i = 1 n a i X i {\displaystyle X=\sum _{i=1}^{n}a_{i}X_{i}} , where a 1 2 + + a n 2 = 1 {\displaystyle a_{1}^{2}+\cdots +a_{n}^{2}=1} and the X i {\displaystyle X_{i}} 's are independent Rademacher variables. Then

Pr [ | X | 1 ] 1 / 2. {\displaystyle \Pr\geq 1/2.}

For example, when a 1 = a 2 = = a n = 1 / n {\displaystyle a_{1}=a_{2}=\cdots =a_{n}=1/{\sqrt {n}}} , one gets the following bound, first shown by Van Zuijlen.

Pr ( | i = 1 n X i n | 1 ) 0.5. {\displaystyle \Pr \left(\left|{\frac {\sum _{i=1}^{n}X_{i}}{\sqrt {n}}}\right|\leq 1\right)\geq 0.5.}

The bound is sharp and better than that which can be derived from the normal distribution (approximately Pr > 0.31).

Applications

The Rademacher distribution has been used in bootstrapping. See Chapter 17 of Testing Statistical Hypotheses for example. The distribution is particularly useful in high-dimensional statistics.

The Rademacher distribution can be used to show that normally distributed and uncorrelated does not imply independent.

Random vectors with components sampled independently from the Rademacher distribution are useful for various stochastic approximations, for example:

  • The Hutchinson trace estimator, which can be used to efficiently approximate the trace of a matrix of which the elements are not directly accessible, but rather implicitly defined via matrix-vector products.
  • SPSA, a computationally cheap, derivative-free, stochastic gradient approximation, useful for numerical optimization.

Rademacher random variables are used in the Symmetrization Inequality.

Related distributions

  • Bernoulli distribution: If X has a Rademacher distribution, then X + 1 2 {\displaystyle {\frac {X+1}{2}}} has a Bernoulli(1/2) distribution.
  • Laplace distribution: If X has a Rademacher distribution and Y ~ Exp(λ) is independent from X, then XY ~ Laplace(0, 1/λ).

References

  1. Hitczenko, P.; Kwapień, S. (1994). "On the Rademacher series". Probability in Banach Spaces. Progress in probability. Vol. 35. pp. 31–36. doi:10.1007/978-1-4612-0253-0_2. ISBN 978-1-4612-6682-2.
  2. Montgomery-Smith, S. J. (1990). "The distribution of Rademacher sums". Proc Amer Math Soc. 109 (2): 517–522. doi:10.1090/S0002-9939-1990-1013975-0.
  3. Dilworth, S. J.; Montgomery-Smith, S. J. (1993). "The distribution of vector-valued Radmacher series". Ann Probab. 21 (4): 2046–2052. arXiv:math/9206201. doi:10.1214/aop/1176989010. JSTOR 2244710. S2CID 15159626.
  4. Khintchine, A. (1923). "Über dyadische Brüche". Math. Z. 18 (1): 109–116. doi:10.1007/BF01192399. S2CID 119840766.
  5. Holzman, Ron; Kleitman, Daniel J. (1992-09-01). "On the product of sign vectors and unit vectors". Combinatorica. 12 (3): 303–316. doi:10.1007/BF01285819. ISSN 1439-6912. S2CID 20281665.
  6. Boppana, Ravi B.; Holzman, Ron (2017-08-31). "Tomaszewski's Problem on Randomly Signed Sums: Breaking the 3/8 Barrier". arXiv:1704.00350 .
  7. Keller, Nathan; Klein, Ohad (2021-08-03). "Proof of Tomaszewski's Conjecture on Randomly Signed Sums". arXiv:2006.16834 .
  8. van Zuijlen, Martien C. A. (2011). "On a conjecture concerning the sum of independent Rademacher random variables". arXiv:1112.4988 .
  9. Lehmann, Erich L.; Romano, Joseph P. (2022). Testing statistical hypotheses (Forth ed.). Cham: Springer. pp. 835 -- 842. ISBN 978-3-030-70577-0.
  10. Chernozhuokov, Victor; Chetverikov, Denis; Kato, Kengo; Koike, Yuta (October 2022). "Improved central limit theorem and bootstrap approximations in high dimensions". Annals of Statistics. 50 (5): 2562 -- 2586. arXiv:1912.10529. doi:10.1214/22-AOS2193.
  11. Avron, H.; Toledo, S. (2011). "Randomized algorithms for estimating the trace of an implicit symmetric positive semidefinite matrix". Journal of the ACM. 58 (2): 8. CiteSeerX 10.1.1.380.9436. doi:10.1145/1944345.1944349. S2CID 5827717.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category:
Rademacher distribution Add topic