Misplaced Pages

Fréchet distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Continuous probability distribution
Fréchet
Probability density functionPDF of the Fréchet distribution
Cumulative distribution functionCDF of the Fréchet distribution
Parameters α ( 0 , ) {\displaystyle \alpha \in (0,\infty )} shape.
(Optionally, two more parameters)
s ( 0 , ) {\displaystyle s\in (0,\infty )} scale (default: s = 1 {\displaystyle s=1\,} )
m ( , ) {\displaystyle m\in (-\infty ,\infty )} location of minimum (default: m = 0 {\displaystyle m=0\,} )
Support x > m {\displaystyle x>m}
PDF α s ( x m s ) 1 α e ( x m s ) α {\displaystyle {\frac {\alpha }{s}}\;\left({\frac {x-m}{s}}\right)^{-1-\alpha }\;e^{-({\frac {x-m}{s}})^{-\alpha }}}
CDF e ( x m s ) α {\displaystyle e^{-({\frac {x-m}{s}})^{-\alpha }}}
Quantile ( ln ( p ) ) 1 α {\displaystyle \left(-\ln(p)\right)^{-{\frac {1}{\alpha }}}}
Mean {   m + s Γ ( 1 1 α ) for  α > 1   otherwise {\displaystyle {\begin{cases}\ m+s\Gamma \left(1-{\frac {1}{\alpha }}\right)&{\text{for }}\alpha >1\\\ \infty &{\text{otherwise}}\end{cases}}}
Median m + s log e ( 2 ) α {\displaystyle m+{\frac {s}{\sqrt{\log _{e}(2)}}}}
Mode m + s ( α 1 + α ) 1 / α {\displaystyle m+s\left({\frac {\alpha }{1+\alpha }}\right)^{1/\alpha }}
Variance {   s 2 ( Γ ( 1 2 α ) ( Γ ( 1 1 α ) ) 2 ) for  α > 2   otherwise {\displaystyle {\begin{cases}\ s^{2}\left(\Gamma \left(1-{\frac {2}{\alpha }}\right)-\left(\Gamma \left(1-{\frac {1}{\alpha }}\right)\right)^{2}\right)&{\text{for }}\alpha >2\\\ \infty &{\text{otherwise}}\end{cases}}}
Skewness {   Γ ( 1 3 α ) 3 Γ ( 1 2 α ) Γ ( 1 1 α ) + 2 Γ 3 ( 1 1 α ) ( Γ ( 1 2 α ) Γ 2 ( 1 1 α ) ) 3 for  α > 3   otherwise {\displaystyle {\begin{cases}\ {\frac {\Gamma \left(1-{\frac {3}{\alpha }}\right)-3\Gamma \left(1-{\frac {2}{\alpha }}\right)\Gamma \left(1-{\frac {1}{\alpha }}\right)+2\Gamma ^{3}\left(1-{\frac {1}{\alpha }}\right)}{\sqrt {\left(\Gamma \left(1-{\frac {2}{\alpha }}\right)-\Gamma ^{2}\left(1-{\frac {1}{\alpha }}\right)\right)^{3}}}}&{\text{for }}\alpha >3\\\ \infty &{\text{otherwise}}\end{cases}}}
Excess kurtosis {   6 + Γ ( 1 4 α ) 4 Γ ( 1 3 α ) Γ ( 1 1 α ) + 3 Γ 2 ( 1 2 α ) [ Γ ( 1 2 α ) Γ 2 ( 1 1 α ) ] 2 for  α > 4   otherwise {\displaystyle {\begin{cases}\ -6+{\frac {\Gamma \left(1-{\frac {4}{\alpha }}\right)-4\Gamma \left(1-{\frac {3}{\alpha }}\right)\Gamma \left(1-{\frac {1}{\alpha }}\right)+3\Gamma ^{2}\left(1-{\frac {2}{\alpha }}\right)}{\left^{2}}}&{\text{for }}\alpha >4\\\ \infty &{\text{otherwise}}\end{cases}}}
Entropy 1 + γ α + γ + ln ( s α ) {\displaystyle 1+{\frac {\gamma }{\alpha }}+\gamma +\ln \left({\frac {s}{\alpha }}\right)} , where γ {\displaystyle \gamma } is the Euler–Mascheroni constant.
MGF Note: Moment k {\displaystyle k} exists if α > k {\displaystyle \alpha >k}
CF

The Fréchet distribution, also known as inverse Weibull distribution, is a special case of the generalized extreme value distribution. It has the cumulative distribution function

Pr (   X x   ) = e x α    if    x > 0   . {\displaystyle \Pr(\ X\leq x\ )=e^{-x^{-\alpha }}~{\text{ if }}~x>0~.}

where   α > 0   is a shape parameter. It can be generalised to include a location parameter m (the minimum) and a scale parameters > 0   with the cumulative distribution function

Pr (   X x   ) = exp (   (   x m   s ) α   )    if    x > m   . {\displaystyle \Pr(\ X\leq x\ )=\exp \left(\ -\left({\tfrac {\ x-m\ }{s}}\right)^{-\alpha }\ \right)~{\text{ if }}~x>m~.}

Named for Maurice Fréchet who wrote a related paper in 1927, further work was done by Fisher and Tippett in 1928 and by Gumbel in 1958.

Characteristics

The single parameter Fréchet, with parameter   α   , {\displaystyle \ \alpha \ ,} has standardized moment

μ k = 0 x k f ( x )   d x = 0 t k α e t   d t   , {\displaystyle \mu _{k}=\int _{0}^{\infty }x^{k}f(x)\ \operatorname {d} x=\int _{0}^{\infty }t^{-{\frac {k}{\alpha }}}e^{-t}\ \operatorname {d} t\ ,}

(with   t = x α   {\displaystyle \ t=x^{-\alpha }\ } ) defined only for   k < α   : {\displaystyle \ k<\alpha \ :}

  μ k = Γ ( 1 k α )   {\displaystyle \ \mu _{k}=\Gamma \left(1-{\frac {k}{\alpha }}\right)\ }

where   Γ ( z )   {\displaystyle \ \Gamma \left(z\right)\ } is the Gamma function.

In particular:

  • For α > 1 {\displaystyle \alpha >1} the expectation is E [ X ] = Γ ( 1 1 α ) {\displaystyle E=\Gamma (1-{\tfrac {1}{\alpha }})}
  • For α > 2 {\displaystyle \alpha >2} the variance is Var ( X ) = Γ ( 1 2 α ) ( Γ ( 1 1 α ) ) 2 . {\displaystyle {\text{Var}}(X)=\Gamma (1-{\tfrac {2}{\alpha }})-{\big (}\Gamma (1-{\tfrac {1}{\alpha }}){\big )}^{2}.}

The quantile q y {\displaystyle q_{y}} of order y {\displaystyle y} can be expressed through the inverse of the distribution,

q y = F 1 ( y ) = ( log e y ) 1 α {\displaystyle q_{y}=F^{-1}(y)=\left(-\log _{e}y\right)^{-{\frac {1}{\alpha }}}} .

In particular the median is:

q 1 / 2 = ( log e 2 ) 1 α . {\displaystyle q_{1/2}=(\log _{e}2)^{-{\frac {1}{\alpha }}}.}

The mode of the distribution is ( α α + 1 ) 1 α . {\displaystyle \left({\frac {\alpha }{\alpha +1}}\right)^{\frac {1}{\alpha }}.}

Especially for the 3-parameter Fréchet, the first quartile is q 1 = m + s log ( 4 ) α {\displaystyle q_{1}=m+{\frac {s}{\sqrt{\log(4)}}}} and the third quartile q 3 = m + s log ( 4 3 ) α . {\displaystyle q_{3}=m+{\frac {s}{\sqrt{\log({\frac {4}{3}})}}}.}

Also the quantiles for the mean and mode are:

F ( m e a n ) = exp ( Γ α ( 1 1 α ) ) {\displaystyle F(mean)=\exp \left(-\Gamma ^{-\alpha }\left(1-{\frac {1}{\alpha }}\right)\right)}
F ( m o d e ) = exp ( α + 1 α ) . {\displaystyle F(mode)=\exp \left(-{\frac {\alpha +1}{\alpha }}\right).}

Applications

Fitted cumulative Fréchet distribution to extreme one-day rainfalls

However, in most hydrological applications, the distribution fitting is via the generalized extreme value distribution as this avoids imposing the assumption that the distribution does not have a lower bound (as required by the Frechet distribution).

Fitted decline curve analysis. Duong model can be thought of as a generalization of the Frechet distribution.
  • In decline curve analysis, a declining pattern the time series data of oil or gas production rate over time for a well can be described by the Fréchet distribution.
  • One test to assess whether a multivariate distribution is asymptotically dependent or independent consists of transforming the data into standard Fréchet margins using the transformation Z i = 1 / log F i ( X i ) {\displaystyle Z_{i}=-1/\log F_{i}(X_{i})} and then mapping from Cartesian to pseudo-polar coordinates ( R , W ) = ( Z 1 + Z 2 , Z 1 / ( Z 1 + Z 2 ) ) {\displaystyle (R,W)=(Z_{1}+Z_{2},Z_{1}/(Z_{1}+Z_{2}))} . Values of R 1 {\displaystyle R\gg 1} correspond to the extreme data for which at least one component is large while W {\displaystyle W} approximately 1 or 0 corresponds to only one component being extreme.
  • In Economics it is used to model the idiosyncratic component of preferences of individuals for different products (Industrial Organization), locations (Urban Economics), or firms (Labor Economics).

Related distributions


Scaling relations
  • If   X U (   0 , 1   )   {\displaystyle \ X\sim U(\ 0,1\ )\ } (continuous uniform distribution) then   m + s ( log e ( X )   ) 1 α Frechet ( α , s , m )   {\displaystyle \ m+s\cdot {\Bigl (}-\log _{e}\!(X)\ {\Bigr )}^{\frac {-1\;}{\alpha }}\sim {\textsf {Frechet}}(\alpha ,s,m)\ }
  • If   X Frechet (   α , s , m = 0   )   {\displaystyle \ X\sim {\textsf {Frechet}}(\ \alpha ,s,m=0\ )\ } then its reciprocal is Weibull-distributed:     1   X Weibull (   k = α , λ = 1 s   )   {\displaystyle \ {\frac {\ 1\ }{X}}\sim {\textsf {Weibull}}\!\left(\ k=\alpha ,\lambda ={\tfrac {1}{s}}\ \right)\ }
  • If   X Frechet ( α , s , m )   {\displaystyle \ X\sim {\textsf {Frechet}}(\alpha ,s,m)\ } then   k   X + b Frechet (   α , k s , k   m + b   )   {\displaystyle \ k\ X+b\sim {\textrm {Frechet}}(\ \alpha ,ks,k\ m+b\ )\ }
  • If   X i Frechet (   α , s , m   )   {\displaystyle \ X_{i}\sim {\textsf {Frechet}}(\ \alpha ,s,m\ )\ } and   Y = max {   X 1 , , X n   }   {\displaystyle \ Y=\max\{\ X_{1},\ldots ,X_{n}\ \}\ } then   Y Frechet (   α , n 1 α s , m   )   {\displaystyle \ Y\sim {\textsf {Frechet}}(\ \alpha ,n^{\tfrac {1}{\alpha }}s,m\ )\ }

Properties

See also

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2011) (Learn how and when to remove this message)

References

  1. ^ Muraleedharan, G.; Guedes Soares, C.; Lucas, Cláudia (2011). "Characteristic and moment generating functions of generalised extreme value distribution (GEV)". In Wright, Linda L. (ed.). Sea Level Rise, Coastal Engineering, Shorelines, and Tides. Nova Science Publishers. Chapter 14, pp. 269–276. ISBN 978-1-61728-655-1.
  2. Khan, M.S.; Pasha, G.R.; Pasha, A.H. (February 2008). "Theoretical analysis of inverse Weibull distribution" (PDF). WSEAS Transactions on Mathematics. 7 (2): 30–38.
  3. de Gusmão, Felipe R.S.; Ortega, Edwin M.M.; Cordeiro, Gauss M. (2011). "The generalized inverse Weibull distribution". Statistical Papers. 52 (3). Springer-Verlag: 591–619. doi:10.1007/s00362-009-0271-3. ISSN 0932-5026.
  4. Fréchet, M. (1927). "Sur la loi de probabilité de l'écart maximum" [On the probability distribution of the maximum deviation]. Annales Polonici Mathematici (in French). 6: 93.
  5. Fisher, R.A.; Tippett, L.H.C. (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample". Proceedings of the Cambridge Philosophical Society. 24 (2): 180–190. Bibcode:1928PCPS...24..180F. doi:10.1017/S0305004100015681. S2CID 123125823.
  6. Gumbel, E.J. (1958). Statistics of Extremes. New York, NY: Columbia University Press. OCLC 180577.
  7. Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag. ISBN 978-1-85233-459-8.
  8. Lee, Se Yoon; Mallick, Bani (2021). "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas". Sankhya B. 84: 1–43. doi:10.1007/s13571-020-00245-8.

Further reading

  • Kotz, S.; Nadarajah, S. (2000). Extreme Value Distributions: Theory and applications. World Scientific. ISBN 1-86094-224-5.

External links

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
Fréchet distribution Add topic