Misplaced Pages

Bivariate von Mises distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Probability distribution on a torus
Samples from the cosine variant of the bivariate von Mises distribution. The green points are sampled from a distribution with high concentration and no correlation ( κ 1 = κ 2 = 200 {\displaystyle \kappa _{1}=\kappa _{2}=200} , κ 3 = 0 {\displaystyle \kappa _{3}=0} ), the blue points are sampled from a distribution with high concentration and negative correlation ( κ 1 = κ 2 = 200 {\displaystyle \kappa _{1}=\kappa _{2}=200} , κ 3 = 100 {\displaystyle \kappa _{3}=100} ), and the red points are sampled from a distribution with low concentration and no correlation ( κ 1 = κ 2 = 20 , κ 3 = 0 {\displaystyle \kappa _{1}=\kappa _{2}=20,\kappa _{3}=0} ).

In probability theory and statistics, the bivariate von Mises distribution is a probability distribution describing values on a torus. It may be thought of as an analogue on the torus of the bivariate normal distribution. The distribution belongs to the field of directional statistics. The general bivariate von Mises distribution was first proposed by Kanti Mardia in 1975. One of its variants is today used in the field of bioinformatics to formulate a probabilistic model of protein structure in atomic detail, such as backbone-dependent rotamer libraries.

Definition

The bivariate von Mises distribution is a probability distribution defined on the torus, S 1 × S 1 {\displaystyle S^{1}\times S^{1}} in R 3 {\displaystyle \mathbb {R} ^{3}} . The probability density function of the general bivariate von Mises distribution for the angles ϕ , ψ [ 0 , 2 π ] {\displaystyle \phi ,\psi \in } is given by

f ( ϕ , ψ ) exp [ κ 1 cos ( ϕ μ ) + κ 2 cos ( ψ ν ) + ( cos ( ϕ μ ) , sin ( ϕ μ ) ) A ( cos ( ψ ν ) , sin ( ψ ν ) ) T ] , {\displaystyle f(\phi ,\psi )\propto \exp,}

where μ {\displaystyle \mu } and ν {\displaystyle \nu } are the means for ϕ {\displaystyle \phi } and ψ {\displaystyle \psi } , κ 1 {\displaystyle \kappa _{1}} and κ 2 {\displaystyle \kappa _{2}} their concentration and the matrix A M ( 2 , 2 ) {\displaystyle \mathbf {A} \in \mathbb {M} (2,2)} is related to their correlation.

Two commonly used variants of the bivariate von Mises distribution are the sine and cosine variant.

The cosine variant of the bivariate von Mises distribution has the probability density function

f ( ϕ , ψ ) = Z c ( κ 1 , κ 2 , κ 3 )   exp [ κ 1 cos ( ϕ μ ) + κ 2 cos ( ψ ν ) κ 3 cos ( ϕ μ ψ + ν ) ] , {\displaystyle f(\phi ,\psi )=Z_{c}(\kappa _{1},\kappa _{2},\kappa _{3})\ \exp,}

where μ {\displaystyle \mu } and ν {\displaystyle \nu } are the means for ϕ {\displaystyle \phi } and ψ {\displaystyle \psi } , κ 1 {\displaystyle \kappa _{1}} and κ 2 {\displaystyle \kappa _{2}} their concentration and κ 3 {\displaystyle \kappa _{3}} is related to their correlation. Z c {\displaystyle Z_{c}} is the normalization constant. This distribution with κ 3 {\displaystyle \kappa _{3}} =0 has been used for kernel density estimates of the distribution of the protein dihedral angles ϕ {\displaystyle \phi } and ψ {\displaystyle \psi } .

The sine variant has the probability density function

f ( ϕ , ψ ) = Z s ( κ 1 , κ 2 , κ 3 )   exp [ κ 1 cos ( ϕ μ ) + κ 2 cos ( ψ ν ) + κ 3 sin ( ϕ μ ) sin ( ψ ν ) ] , {\displaystyle f(\phi ,\psi )=Z_{s}(\kappa _{1},\kappa _{2},\kappa _{3})\ \exp,}

where the parameters have the same interpretation.

See also

References

  1. ^ Mardia, Kanti (1975). "Statistics of directional data". J. R. Stat. Soc. B. 37 (3): 349–393. doi:10.1111/j.2517-6161.1975.tb01550.x. JSTOR 2984782.
  2. Mardia, K. V.; Frellsen, J. (2012). "Statistics of Bivariate von Mises Distributions". Bayesian Methods in Structural Bioinformatics. Statistics for Biology and Health. pp. 159. doi:10.1007/978-3-642-27225-7_6. ISBN 978-3-642-27224-0.
  3. ^ Boomsma, W.; Mardia, K. V.; Taylor, C. C.; Ferkinghoff-Borg, J.; Krogh, A.; Hamelryck, T. (2008). "A generative, probabilistic model of local protein structure". Proceedings of the National Academy of Sciences. 105 (26): 8932–7. Bibcode:2008PNAS..105.8932B. doi:10.1073/pnas.0801715105. PMC 2440424. PMID 18579771.
  4. ^ Shapovalov MV, Dunbrack, RL (2011). "A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions". Structure. 19 (6): 844–858. doi:10.1016/j.str.2011.03.019. PMC 3118414. PMID 21645855.
  5. Singh, H. (2002). "Probabilistic model for two dependent circular variables". Biometrika. 89 (3): 719–723. doi:10.1093/biomet/89.3.719.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
Bivariate von Mises distribution Add topic