Misplaced Pages

q-Weibull distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
q-Weibull distribution
Probability density functionGraph of the q-Weibull pdf
Cumulative distribution functionGraph of the q-Weibull cdf
Parameters q < 2 {\displaystyle q<2} shape (real)
λ > 0 {\displaystyle \lambda >0} rate (real)
κ > 0 {\displaystyle \kappa >0\,} shape (real)
Support x [ 0 ; + )  for  q 1 {\displaystyle x\in [0;+\infty )\!{\text{ for }}q\geq 1}
x [ 0 ; λ ( 1 q ) 1 / κ )  for  q < 1 {\displaystyle x\in [0;{\lambda \over {(1-q)^{1/\kappa }}}){\text{ for }}q<1}
PDF { ( 2 q ) κ λ ( x λ ) κ 1 e q ( x / λ ) κ x 0 0 x < 0 {\displaystyle {\begin{cases}(2-q){\frac {\kappa }{\lambda }}\left({\frac {x}{\lambda }}\right)^{\kappa -1}e_{q}^{-(x/\lambda )^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}
CDF { 1 e q ( x / λ ) κ x 0 0 x < 0 {\displaystyle {\begin{cases}1-e_{q'}^{-(x/\lambda ')^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}
Mean (see article)

In statistics, the q-Weibull distribution is a probability distribution that generalizes the Weibull distribution and the Lomax distribution (Pareto Type II). It is one example of a Tsallis distribution.

Characterization

Probability density function

The probability density function of a q-Weibull random variable is:

f ( x ; q , λ , κ ) = { ( 2 q ) κ λ ( x λ ) κ 1 e q ( ( x / λ ) κ ) x 0 , 0 x < 0 , {\displaystyle f(x;q,\lambda ,\kappa )={\begin{cases}(2-q){\frac {\kappa }{\lambda }}\left({\frac {x}{\lambda }}\right)^{\kappa -1}e_{q}(-(x/\lambda )^{\kappa })&x\geq 0,\\0&x<0,\end{cases}}}

where q < 2, κ {\displaystyle \kappa } > 0 are shape parameters and λ > 0 is the scale parameter of the distribution and

e q ( x ) = { exp ( x ) if  q = 1 , [ 1 + ( 1 q ) x ] 1 / ( 1 q ) if  q 1  and  1 + ( 1 q ) x > 0 , 0 1 / ( 1 q ) if  q 1  and  1 + ( 1 q ) x 0 , {\displaystyle e_{q}(x)={\begin{cases}\exp(x)&{\text{if }}q=1,\\^{1/(1-q)}&{\text{if }}q\neq 1{\text{ and }}1+(1-q)x>0,\\0^{1/(1-q)}&{\text{if }}q\neq 1{\text{ and }}1+(1-q)x\leq 0,\\\end{cases}}}

is the q-exponential

Cumulative distribution function

The cumulative distribution function of a q-Weibull random variable is:

{ 1 e q ( x / λ ) κ x 0 0 x < 0 {\displaystyle {\begin{cases}1-e_{q'}^{-(x/\lambda ')^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}

where

λ = λ ( 2 q ) 1 κ {\displaystyle \lambda '={\lambda \over (2-q)^{1 \over \kappa }}}
q = 1 ( 2 q ) {\displaystyle q'={1 \over (2-q)}}

Mean

The mean of the q-Weibull distribution is

μ ( q , κ , λ ) = { λ ( 2 + 1 1 q + 1 κ ) ( 1 q ) 1 κ B [ 1 + 1 κ , 2 + 1 1 q ] q < 1 λ Γ ( 1 + 1 κ ) q = 1 λ ( 2 q ) ( q 1 ) 1 + κ κ B [ 1 + 1 κ , ( 1 + 1 q 1 + 1 κ ) ] 1 < q < 1 + 1 + 2 κ 1 + κ 1 + κ κ + 1 q < 2 {\displaystyle \mu (q,\kappa ,\lambda )={\begin{cases}\lambda \,\left(2+{\frac {1}{1-q}}+{\frac {1}{\kappa }}\right)(1-q)^{-{\frac {1}{\kappa }}}\,B\left&q<1\\\lambda \,\Gamma (1+{\frac {1}{\kappa }})&q=1\\\lambda \,(2-q)(q-1)^{-{\frac {1+\kappa }{\kappa }}}\,B\left&1<q<1+{\frac {1+2\kappa }{1+\kappa }}\\\infty &1+{\frac {\kappa }{\kappa +1}}\leq q<2\end{cases}}}

where B ( ) {\displaystyle B()} is the Beta function and Γ ( ) {\displaystyle \Gamma ()} is the Gamma function. The expression for the mean is a continuous function of q over the range of definition for which it is finite.

Relationship to other distributions

The q-Weibull is equivalent to the Weibull distribution when q = 1 and equivalent to the q-exponential when κ = 1 {\displaystyle \kappa =1}

The q-Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions ( q 1 + κ κ + 1 ) {\displaystyle (q\geq 1+{\frac {\kappa }{\kappa +1}})} .

The q-Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the κ {\displaystyle \kappa } parameter. The Lomax parameters are:

α = 2 q q 1   ,   λ Lomax = 1 λ ( q 1 ) {\displaystyle \alpha ={{2-q} \over {q-1}}~,~\lambda _{\text{Lomax}}={1 \over {\lambda (q-1)}}}

As the Lomax distribution is a shifted version of the Pareto distribution, the q-Weibull for κ = 1 {\displaystyle \kappa =1} is a shifted reparameterized generalization of the Pareto. When q > 1, the q-exponential is equivalent to the Pareto shifted to have support starting at zero. Specifically:

If  X q - W e i b u l l ( q , λ , κ = 1 )  and  Y [ Pareto ( x m = 1 λ ( q 1 ) , α = 2 q q 1 ) x m ] ,  then  X Y {\displaystyle {\text{If }}X\sim \operatorname {{\mathit {q}}-Weibull} (q,\lambda ,\kappa =1){\text{ and }}Y\sim \left,{\text{ then }}X\sim Y\,}

See also

References

  1. ^ Picoli, S. Jr.; Mendes, R. S.; Malacarne, L. C. (2003). "q-exponential, Weibull, and q-Weibull distributions: an empirical analysis". Physica A: Statistical Mechanics and Its Applications. 324 (3): 678–688. arXiv:cond-mat/0301552. Bibcode:2003PhyA..324..678P. doi:10.1016/S0378-4371(03)00071-2. S2CID 119361445.
  2. Naudts, Jan (2010). "The q-exponential family in statistical physics". Journal of Physics: Conference Series. 201 (1): 012003. arXiv:0911.5392. Bibcode:2010JPhCS.201a2003N. doi:10.1088/1742-6596/201/1/012003. S2CID 119276469.
  3. Umarov, Sabir; Tsallis, Constantino; Steinberg, Stanly (2008). "On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics" (PDF). Milan Journal of Mathematics. 76: 307–328. doi:10.1007/s00032-008-0087-y. S2CID 55967725. Retrieved 9 June 2014.
Tsallis statistics
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
q-Weibull distribution Add topic