q -Weibull distribution
Probability density function
Cumulative distribution function Parameters
q
<
2
{\displaystyle q<2}
shape (real )
λ
>
0
{\displaystyle \lambda >0}
rate (real )
κ
>
0
{\displaystyle \kappa >0\,}
shape (real) Support
x
∈
[
0
;
+
∞
)
for
q
≥
1
{\displaystyle x\in [0;+\infty )\!{\text{ for }}q\geq 1}
x
∈
[
0
;
λ
(
1
−
q
)
1
/
κ
)
for
q
<
1
{\displaystyle x\in [0;{\lambda \over {(1-q)^{1/\kappa }}}){\text{ for }}q<1}
PDF
{
(
2
−
q
)
κ
λ
(
x
λ
)
κ
−
1
e
q
−
(
x
/
λ
)
κ
x
≥
0
0
x
<
0
{\displaystyle {\begin{cases}(2-q){\frac {\kappa }{\lambda }}\left({\frac {x}{\lambda }}\right)^{\kappa -1}e_{q}^{-(x/\lambda )^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}
CDF
{
1
−
e
q
′
−
(
x
/
λ
′
)
κ
x
≥
0
0
x
<
0
{\displaystyle {\begin{cases}1-e_{q'}^{-(x/\lambda ')^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}
Mean
(see article)
In statistics, the q -Weibull distribution is a probability distribution that generalizes the Weibull distribution and the Lomax distribution (Pareto Type II). It is one example of a Tsallis distribution .
Characterization
Probability density function
The probability density function of a q -Weibull random variable is:
f
(
x
;
q
,
λ
,
κ
)
=
{
(
2
−
q
)
κ
λ
(
x
λ
)
κ
−
1
e
q
(
−
(
x
/
λ
)
κ
)
x
≥
0
,
0
x
<
0
,
{\displaystyle f(x;q,\lambda ,\kappa )={\begin{cases}(2-q){\frac {\kappa }{\lambda }}\left({\frac {x}{\lambda }}\right)^{\kappa -1}e_{q}(-(x/\lambda )^{\kappa })&x\geq 0,\\0&x<0,\end{cases}}}
where q < 2,
κ
{\displaystyle \kappa }
> 0 are shape parameters and λ > 0 is the scale parameter of the distribution and
e
q
(
x
)
=
{
exp
(
x
)
if
q
=
1
,
[
1
+
(
1
−
q
)
x
]
1
/
(
1
−
q
)
if
q
≠
1
and
1
+
(
1
−
q
)
x
>
0
,
0
1
/
(
1
−
q
)
if
q
≠
1
and
1
+
(
1
−
q
)
x
≤
0
,
{\displaystyle e_{q}(x)={\begin{cases}\exp(x)&{\text{if }}q=1,\\^{1/(1-q)}&{\text{if }}q\neq 1{\text{ and }}1+(1-q)x>0,\\0^{1/(1-q)}&{\text{if }}q\neq 1{\text{ and }}1+(1-q)x\leq 0,\\\end{cases}}}
is the q -exponential
Cumulative distribution function
The cumulative distribution function of a q -Weibull random variable is:
{
1
−
e
q
′
−
(
x
/
λ
′
)
κ
x
≥
0
0
x
<
0
{\displaystyle {\begin{cases}1-e_{q'}^{-(x/\lambda ')^{\kappa }}&x\geq 0\\0&x<0\end{cases}}}
where
λ
′
=
λ
(
2
−
q
)
1
κ
{\displaystyle \lambda '={\lambda \over (2-q)^{1 \over \kappa }}}
q
′
=
1
(
2
−
q
)
{\displaystyle q'={1 \over (2-q)}}
Mean
The mean of the q -Weibull distribution is
μ
(
q
,
κ
,
λ
)
=
{
λ
(
2
+
1
1
−
q
+
1
κ
)
(
1
−
q
)
−
1
κ
B
[
1
+
1
κ
,
2
+
1
1
−
q
]
q
<
1
λ
Γ
(
1
+
1
κ
)
q
=
1
λ
(
2
−
q
)
(
q
−
1
)
−
1
+
κ
κ
B
[
1
+
1
κ
,
−
(
1
+
1
q
−
1
+
1
κ
)
]
1
<
q
<
1
+
1
+
2
κ
1
+
κ
∞
1
+
κ
κ
+
1
≤
q
<
2
{\displaystyle \mu (q,\kappa ,\lambda )={\begin{cases}\lambda \,\left(2+{\frac {1}{1-q}}+{\frac {1}{\kappa }}\right)(1-q)^{-{\frac {1}{\kappa }}}\,B\left&q<1\\\lambda \,\Gamma (1+{\frac {1}{\kappa }})&q=1\\\lambda \,(2-q)(q-1)^{-{\frac {1+\kappa }{\kappa }}}\,B\left&1<q<1+{\frac {1+2\kappa }{1+\kappa }}\\\infty &1+{\frac {\kappa }{\kappa +1}}\leq q<2\end{cases}}}
where
B
(
)
{\displaystyle B()}
is the Beta function and
Γ
(
)
{\displaystyle \Gamma ()}
is the Gamma function . The expression for the mean is a continuous function of q over the range of definition for which it is finite.
Relationship to other distributions
The q -Weibull is equivalent to the Weibull distribution when q = 1 and equivalent to the q -exponential when
κ
=
1
{\displaystyle \kappa =1}
The q -Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions
(
q
≥
1
+
κ
κ
+
1
)
{\displaystyle (q\geq 1+{\frac {\kappa }{\kappa +1}})}
.
The q -Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the
κ
{\displaystyle \kappa }
parameter. The Lomax parameters are:
α
=
2
−
q
q
−
1
,
λ
Lomax
=
1
λ
(
q
−
1
)
{\displaystyle \alpha ={{2-q} \over {q-1}}~,~\lambda _{\text{Lomax}}={1 \over {\lambda (q-1)}}}
As the Lomax distribution is a shifted version of the Pareto distribution , the q -Weibull for
κ
=
1
{\displaystyle \kappa =1}
is a shifted reparameterized generalization of the Pareto. When q > 1, the q -exponential is equivalent to the Pareto shifted to have support starting at zero. Specifically:
If
X
∼
q
-
W
e
i
b
u
l
l
(
q
,
λ
,
κ
=
1
)
and
Y
∼
[
Pareto
(
x
m
=
1
λ
(
q
−
1
)
,
α
=
2
−
q
q
−
1
)
−
x
m
]
,
then
X
∼
Y
{\displaystyle {\text{If }}X\sim \operatorname {{\mathit {q}}-Weibull} (q,\lambda ,\kappa =1){\text{ and }}Y\sim \left,{\text{ then }}X\sim Y\,}
See also
References
^ Picoli, S. Jr.; Mendes, R. S.; Malacarne, L. C. (2003). "q -exponential, Weibull, and q -Weibull distributions: an empirical analysis". Physica A: Statistical Mechanics and Its Applications . 324 (3): 678–688. arXiv :cond-mat/0301552 . Bibcode :2003PhyA..324..678P . doi :10.1016/S0378-4371(03)00071-2 . S2CID 119361445 .
Naudts, Jan (2010). "The q -exponential family in statistical physics". Journal of Physics: Conference Series . 201 (1): 012003. arXiv :0911.5392 . Bibcode :2010JPhCS.201a2003N . doi :10.1088/1742-6596/201/1/012003 . S2CID 119276469 .
Umarov, Sabir; Tsallis, Constantino; Steinberg, Stanly (2008). "On a q -Central Limit Theorem Consistent with Nonextensive Statistical Mechanics" (PDF). Milan Journal of Mathematics . 76 : 307–328. doi :10.1007/s00032-008-0087-y . S2CID 55967725 . Retrieved 9 June 2014.
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑