Misplaced Pages

Noncentral F-distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a noncentral generalization of the (ordinary) F-distribution. It describes the distribution of the quotient (X/n1)/(Y/n2), where the numerator X has a noncentral chi-squared distribution with n1 degrees of freedom and the denominator Y has a central chi-squared distribution with n2 degrees of freedom. It is also required that X and Y are statistically independent of each other.

It is the distribution of the test statistic in analysis of variance problems when the null hypothesis is false. The noncentral F-distribution is used to find the power function of such a test.

Occurrence and specification

If X {\displaystyle X} is a noncentral chi-squared random variable with noncentrality parameter λ {\displaystyle \lambda } and ν 1 {\displaystyle \nu _{1}} degrees of freedom, and Y {\displaystyle Y} is a chi-squared random variable with ν 2 {\displaystyle \nu _{2}} degrees of freedom that is statistically independent of X {\displaystyle X} , then

F = X / ν 1 Y / ν 2 {\displaystyle F={\frac {X/\nu _{1}}{Y/\nu _{2}}}}

is a noncentral F-distributed random variable. The probability density function (pdf) for the noncentral F-distribution is

p ( f ) = k = 0 e λ / 2 ( λ / 2 ) k B ( ν 2 2 , ν 1 2 + k ) k ! ( ν 1 ν 2 ) ν 1 2 + k ( ν 2 ν 2 + ν 1 f ) ν 1 + ν 2 2 + k f ν 1 / 2 1 + k {\displaystyle p(f)=\sum \limits _{k=0}^{\infty }{\frac {e^{-\lambda /2}(\lambda /2)^{k}}{B\left({\frac {\nu _{2}}{2}},{\frac {\nu _{1}}{2}}+k\right)k!}}\left({\frac {\nu _{1}}{\nu _{2}}}\right)^{{\frac {\nu _{1}}{2}}+k}\left({\frac {\nu _{2}}{\nu _{2}+\nu _{1}f}}\right)^{{\frac {\nu _{1}+\nu _{2}}{2}}+k}f^{\nu _{1}/2-1+k}}

when f 0 {\displaystyle f\geq 0} and zero otherwise. The degrees of freedom ν 1 {\displaystyle \nu _{1}} and ν 2 {\displaystyle \nu _{2}} are positive. The term B ( x , y ) {\displaystyle B(x,y)} is the beta function, where

B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) . {\displaystyle B(x,y)={\frac {\Gamma (x)\Gamma (y)}{\Gamma (x+y)}}.}

The cumulative distribution function for the noncentral F-distribution is

F ( x d 1 , d 2 , λ ) = j = 0 ( ( 1 2 λ ) j j ! e λ / 2 ) I ( d 1 x d 2 + d 1 x | d 1 2 + j , d 2 2 ) {\displaystyle F(x\mid d_{1},d_{2},\lambda )=\sum \limits _{j=0}^{\infty }\left({\frac {\left({\frac {1}{2}}\lambda \right)^{j}}{j!}}e^{-\lambda /2}\right)I\left({\frac {d_{1}x}{d_{2}+d_{1}x}}{\bigg |}{\frac {d_{1}}{2}}+j,{\frac {d_{2}}{2}}\right)}

where I {\displaystyle I} is the regularized incomplete beta function.

The mean and variance of the noncentral F-distribution are

E [ F ] { = ν 2 ( ν 1 + λ ) ν 1 ( ν 2 2 ) if  ν 2 > 2 does not exist if  ν 2 2 {\displaystyle \operatorname {E} \quad {\begin{cases}={\frac {\nu _{2}(\nu _{1}+\lambda )}{\nu _{1}(\nu _{2}-2)}}&{\text{if }}\nu _{2}>2\\{\text{does not exist}}&{\text{if }}\nu _{2}\leq 2\\\end{cases}}}

and

Var [ F ] { = 2 ( ν 1 + λ ) 2 + ( ν 1 + 2 λ ) ( ν 2 2 ) ( ν 2 2 ) 2 ( ν 2 4 ) ( ν 2 ν 1 ) 2 if  ν 2 > 4 does not exist if  ν 2 4. {\displaystyle \operatorname {Var} \quad {\begin{cases}=2{\frac {(\nu _{1}+\lambda )^{2}+(\nu _{1}+2\lambda )(\nu _{2}-2)}{(\nu _{2}-2)^{2}(\nu _{2}-4)}}\left({\frac {\nu _{2}}{\nu _{1}}}\right)^{2}&{\text{if }}\nu _{2}>4\\{\text{does not exist}}&{\text{if }}\nu _{2}\leq 4.\\\end{cases}}}

Special cases

When λ = 0, the noncentral F-distribution becomes the F-distribution.

Related distributions

Z has a noncentral chi-squared distribution if

Z = lim ν 2 ν 1 F {\displaystyle Z=\lim _{\nu _{2}\to \infty }\nu _{1}F}

where F has a noncentral F-distribution.

See also noncentral t-distribution.

Implementations

The noncentral F-distribution is implemented in the R language (e.g., pf function), in MATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in Mathematica (NoncentralFRatioDistribution function), in NumPy (random.noncentral_f), and in Boost C++ Libraries.

A collaborative wiki page implements an interactive online calculator, programmed in the R language, for the noncentral t, chi-squared, and F distributions, at the Institute of Statistics and Econometrics of the Humboldt University of Berlin.

Notes

  1. Kay, S. (1998). Fundamentals of Statistical Signal Processing: Detection Theory. New Jersey: Prentice Hall. p. 29. ISBN 0-13-504135-X.
  2. John Maddock; Paul A. Bristow; Hubert Holin; Xiaogang Zhang; Bruno Lalande; Johan Råde. "Noncentral F Distribution: Boost 1.39.0". Boost.org. Retrieved 20 August 2011.
  3. Sigbert Klinke (10 December 2008). "Comparison of noncentral and central distributions". Humboldt-Universität zu Berlin.

References

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
Noncentral F-distribution Add topic