Misplaced Pages

Burr distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Burr Type XII
Probability density function
Cumulative distribution function
Parameters c > 0 {\displaystyle c>0\!}
k > 0 {\displaystyle k>0\!}
Support x > 0 {\displaystyle x>0\!}
PDF c k x c 1 ( 1 + x c ) k + 1 {\displaystyle ck{\frac {x^{c-1}}{(1+x^{c})^{k+1}}}\!}
CDF 1 ( 1 + x c ) k {\displaystyle 1-\left(1+x^{c}\right)^{-k}}
Quantile λ ( 1 ( 1 U ) 1 k 1 ) 1 c {\displaystyle \lambda \left({\frac {1}{(1-U)^{\frac {1}{k}}}}-1\right)^{\frac {1}{c}}}
Mean μ 1 = k B ( k 1 / c , 1 + 1 / c ) {\displaystyle \mu _{1}=k\operatorname {\mathrm {B} } (k-1/c,\,1+1/c)} where Β() is the beta function
Median ( 2 1 k 1 ) 1 c {\displaystyle \left(2^{\frac {1}{k}}-1\right)^{\frac {1}{c}}}
Mode ( c 1 k c + 1 ) 1 c {\displaystyle \left({\frac {c-1}{kc+1}}\right)^{\frac {1}{c}}}
Variance μ 1 2 + μ 2 {\displaystyle -\mu _{1}^{2}+\mu _{2}}
Skewness 2 μ 1 3 3 μ 1 μ 2 + μ 3 ( μ 1 2 + μ 2 ) 3 / 2 {\displaystyle {\frac {2\mu _{1}^{3}-3\mu _{1}\mu _{2}+\mu _{3}}{\left(-\mu _{1}^{2}+\mu _{2}\right)^{3/2}}}}
Excess kurtosis 3 μ 1 4 + 6 μ 1 2 μ 2 4 μ 1 μ 3 + μ 4 ( μ 1 2 + μ 2 ) 2 3 {\displaystyle {\frac {-3\mu _{1}^{4}+6\mu _{1}^{2}\mu _{2}-4\mu _{1}\mu _{3}+\mu _{4}}{\left(-\mu _{1}^{2}+\mu _{2}\right)^{2}}}-3} where moments (see) μ r = k B ( c k r c , c + r c ) {\displaystyle \mu _{r}=k\operatorname {\mathrm {B} } \left({\frac {ck-r}{c}},\,{\frac {c+r}{c}}\right)}
CF = c ( i t ) k c Γ ( k ) H 1 , 2 2 , 1 [ ( i t ) c | ( k , 1 ) ( 0 , 1 ) , ( k c , c ) ] , t 0 {\displaystyle ={\frac {c(-it)^{kc}}{\Gamma (k)}}H_{1,2}^{2,1}\!\left,t\neq 0}
= 1 , t = 0 {\displaystyle =1,t=0}
where Γ {\displaystyle \Gamma } is the Gamma function and H {\displaystyle H} is the Fox H-function.

In probability theory, statistics and econometrics, the Burr Type XII distribution or simply the Burr distribution is a continuous probability distribution for a non-negative random variable. It is also known as the Singh–Maddala distribution and is one of a number of different distributions sometimes called the "generalized log-logistic distribution".

Definitions

Probability density function

The Burr (Type XII) distribution has probability density function:

f ( x ; c , k ) = c k x c 1 ( 1 + x c ) k + 1 f ( x ; c , k , λ ) = c k λ ( x λ ) c 1 [ 1 + ( x λ ) c ] k 1 {\displaystyle {\begin{aligned}f(x;c,k)&=ck{\frac {x^{c-1}}{(1+x^{c})^{k+1}}}\\f(x;c,k,\lambda )&={\frac {ck}{\lambda }}\left({\frac {x}{\lambda }}\right)^{c-1}\left^{-k-1}\end{aligned}}}

The λ {\displaystyle \lambda } parameter scales the underlying variate and is a positive real.

Cumulative distribution function

The cumulative distribution function is:

F ( x ; c , k ) = 1 ( 1 + x c ) k {\displaystyle F(x;c,k)=1-\left(1+x^{c}\right)^{-k}}
F ( x ; c , k , λ ) = 1 [ 1 + ( x λ ) c ] k {\displaystyle F(x;c,k,\lambda )=1-\left^{-k}}

Applications

It is most commonly used to model household income, see for example: Household income in the U.S. and compare to magenta graph at right.

Random variate generation

Given a random variable U {\displaystyle U} drawn from the uniform distribution in the interval ( 0 , 1 ) {\displaystyle \left(0,1\right)} , the random variable

X = λ ( 1 1 U k 1 ) 1 / c {\displaystyle X=\lambda \left({\frac {1}{\sqrt{1-U}}}-1\right)^{1/c}}

has a Burr Type XII distribution with parameters c {\displaystyle c} , k {\displaystyle k} and λ {\displaystyle \lambda } . This follows from the inverse cumulative distribution function given above.

Related distributions

  • The Burr Type XII distribution is a member of a system of continuous distributions introduced by Irving W. Burr (1942), which comprises 12 distributions.
  • The Dagum distribution, also known as the inverse Burr distribution, is the distribution of 1 / X, where X has the Burr distribution

References

  1. Nadarajah, S.; Pogány, T. K.; Saxena, R. K. (2012). "On the characteristic function for Burr distributions". Statistics. 46 (3): 419–428. doi:10.1080/02331888.2010.513442. S2CID 120848446.
  2. Burr, I. W. (1942). "Cumulative frequency functions". Annals of Mathematical Statistics. 13 (2): 215–232. doi:10.1214/aoms/1177731607. JSTOR 2235756.
  3. Singh, S.; Maddala, G. (1976). "A Function for the Size Distribution of Incomes". Econometrica. 44 (5): 963–970. doi:10.2307/1911538. JSTOR 1911538.
  4. Maddala, G. S. (1996) . Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press. ISBN 0-521-33825-5.
  5. Tadikamalla, Pandu R. (1980), "A Look at the Burr and Related Distributions", International Statistical Review, 48 (3): 337–344, doi:10.2307/1402945, JSTOR 1402945
  6. C. Kleiber and S. Kotz (2003). Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley. See Sections 7.3 "Champernowne Distribution" and 6.4.1 "Fisk Distribution."
  7. Champernowne, D. G. (1952). "The graduation of income distributions". Econometrica. 20 (4): 591–614. doi:10.2307/1907644. JSTOR 1907644.
  8. See Kleiber and Kotz (2003), Table 2.4, p. 51, "The Burr Distributions."

Further reading

External links

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
Burr distribution Add topic