Misplaced Pages

Noncentral beta distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Noncentral Beta
Notation Beta(α, β, λ)
Parameters α > 0 shape (real)
β > 0 shape (real)
λ ≥ 0 noncentrality (real)
Support x [ 0 ; 1 ] {\displaystyle x\in \!}
PDF (type I) j = 0 e λ / 2 ( λ 2 ) j j ! x α + j 1 ( 1 x ) β 1 B ( α + j , β ) {\displaystyle \sum _{j=0}^{\infty }e^{-\lambda /2}{\frac {\left({\frac {\lambda }{2}}\right)^{j}}{j!}}{\frac {x^{\alpha +j-1}\left(1-x\right)^{\beta -1}}{\mathrm {B} \left(\alpha +j,\beta \right)}}}
CDF (type I) j = 0 e λ / 2 ( λ 2 ) j j ! I x ( α + j , β ) {\displaystyle \sum _{j=0}^{\infty }e^{-\lambda /2}{\frac {\left({\frac {\lambda }{2}}\right)^{j}}{j!}}I_{x}\left(\alpha +j,\beta \right)}
Mean (type I) e λ 2 Γ ( α + 1 ) Γ ( α ) Γ ( α + β ) Γ ( α + β + 1 ) 2 F 2 ( α + β , α + 1 ; α , α + β + 1 ; λ 2 ) {\displaystyle e^{-{\frac {\lambda }{2}}}{\frac {\Gamma \left(\alpha +1\right)}{\Gamma \left(\alpha \right)}}{\frac {\Gamma \left(\alpha +\beta \right)}{\Gamma \left(\alpha +\beta +1\right)}}{}_{2}F_{2}\left(\alpha +\beta ,\alpha +1;\alpha ,\alpha +\beta +1;{\frac {\lambda }{2}}\right)} (see Confluent hypergeometric function)
Variance (type I) e λ 2 Γ ( α + 2 ) Γ ( α ) Γ ( α + β ) Γ ( α + β + 2 ) 2 F 2 ( α + β , α + 2 ; α , α + β + 2 ; λ 2 ) μ 2 {\displaystyle e^{-{\frac {\lambda }{2}}}{\frac {\Gamma \left(\alpha +2\right)}{\Gamma \left(\alpha \right)}}{\frac {\Gamma \left(\alpha +\beta \right)}{\Gamma \left(\alpha +\beta +2\right)}}{}_{2}F_{2}\left(\alpha +\beta ,\alpha +2;\alpha ,\alpha +\beta +2;{\frac {\lambda }{2}}\right)-\mu ^{2}} where μ {\displaystyle \mu } is the mean. (see Confluent hypergeometric function)

In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a noncentral generalization of the (central) beta distribution.

The noncentral beta distribution (Type I) is the distribution of the ratio

X = χ m 2 ( λ ) χ m 2 ( λ ) + χ n 2 , {\displaystyle X={\frac {\chi _{m}^{2}(\lambda )}{\chi _{m}^{2}(\lambda )+\chi _{n}^{2}}},}

where χ m 2 ( λ ) {\displaystyle \chi _{m}^{2}(\lambda )} is a noncentral chi-squared random variable with degrees of freedom m and noncentrality parameter λ {\displaystyle \lambda } , and χ n 2 {\displaystyle \chi _{n}^{2}} is a central chi-squared random variable with degrees of freedom n, independent of χ m 2 ( λ ) {\displaystyle \chi _{m}^{2}(\lambda )} . In this case, X Beta ( m 2 , n 2 , λ ) {\displaystyle X\sim {\mbox{Beta}}\left({\frac {m}{2}},{\frac {n}{2}},\lambda \right)}

A Type II noncentral beta distribution is the distribution of the ratio

Y = χ n 2 χ n 2 + χ m 2 ( λ ) , {\displaystyle Y={\frac {\chi _{n}^{2}}{\chi _{n}^{2}+\chi _{m}^{2}(\lambda )}},}

where the noncentral chi-squared variable is in the denominator only. If Y {\displaystyle Y} follows the type II distribution, then X = 1 Y {\displaystyle X=1-Y} follows a type I distribution.

Cumulative distribution function

The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables:

F ( x ) = j = 0 P ( j ) I x ( α + j , β ) , {\displaystyle F(x)=\sum _{j=0}^{\infty }P(j)I_{x}(\alpha +j,\beta ),}

where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and I x ( a , b ) {\displaystyle I_{x}(a,b)} is the incomplete beta function. That is,

F ( x ) = j = 0 1 j ! ( λ 2 ) j e λ / 2 I x ( α + j , β ) . {\displaystyle F(x)=\sum _{j=0}^{\infty }{\frac {1}{j!}}\left({\frac {\lambda }{2}}\right)^{j}e^{-\lambda /2}I_{x}(\alpha +j,\beta ).}

The Type II cumulative distribution function in mixture form is

F ( x ) = j = 0 P ( j ) I x ( α , β + j ) . {\displaystyle F(x)=\sum _{j=0}^{\infty }P(j)I_{x}(\alpha ,\beta +j).}

Algorithms for evaluating the noncentral beta distribution functions are given by Posten and Chattamvelli.

Probability density function

The (Type I) probability density function for the noncentral beta distribution is:

f ( x ) = j = 0 1 j ! ( λ 2 ) j e λ / 2 x α + j 1 ( 1 x ) β 1 B ( α + j , β ) . {\displaystyle f(x)=\sum _{j=0}^{\infty }{\frac {1}{j!}}\left({\frac {\lambda }{2}}\right)^{j}e^{-\lambda /2}{\frac {x^{\alpha +j-1}(1-x)^{\beta -1}}{B(\alpha +j,\beta )}}.}

where B {\displaystyle B} is the beta function, α {\displaystyle \alpha } and β {\displaystyle \beta } are the shape parameters, and λ {\displaystyle \lambda } is the noncentrality parameter. The density of Y is the same as that of 1-X with the degrees of freedom reversed.

Related distributions

Transformations

If X Beta ( α , β , λ ) {\displaystyle X\sim {\mbox{Beta}}\left(\alpha ,\beta ,\lambda \right)} , then β X α ( 1 X ) {\displaystyle {\frac {\beta X}{\alpha (1-X)}}} follows a noncentral F-distribution with 2 α , 2 β {\displaystyle 2\alpha ,2\beta } degrees of freedom, and non-centrality parameter λ {\displaystyle \lambda } .

If X {\displaystyle X} follows a noncentral F-distribution F μ 1 , μ 2 ( λ ) {\displaystyle F_{\mu _{1},\mu _{2}}\left(\lambda \right)} with μ 1 {\displaystyle \mu _{1}} numerator degrees of freedom and μ 2 {\displaystyle \mu _{2}} denominator degrees of freedom, then

Z = μ 2 μ 1 μ 2 μ 1 + X 1 {\displaystyle Z={\cfrac {\cfrac {\mu _{2}}{\mu _{1}}}{{\cfrac {\mu _{2}}{\mu _{1}}}+X^{-1}}}}

follows a noncentral Beta distribution:

Z Beta ( 1 2 μ 1 , 1 2 μ 2 , λ ) {\displaystyle Z\sim {\mbox{Beta}}\left({\frac {1}{2}}\mu _{1},{\frac {1}{2}}\mu _{2},\lambda \right)} .

This is derived from making a straightforward transformation.

Special cases

When λ = 0 {\displaystyle \lambda =0} , the noncentral beta distribution is equivalent to the (central) beta distribution.

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2011) (Learn how and when to remove this message)

References

Citations

  1. ^ Chattamvelli, R. (1995). "A Note on the Noncentral Beta Distribution Function". The American Statistician. 49 (2): 231–234. doi:10.1080/00031305.1995.10476151.
  2. Posten, H.O. (1993). "An Effective Algorithm for the Noncentral Beta Distribution Function". The American Statistician. 47 (2): 129–131. doi:10.1080/00031305.1993.10475957. JSTOR 2685195.

Sources

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
Noncentral beta distribution Add topic