Misplaced Pages

Limit comparison test

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Method of testing for the convergence of an infinite series
Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
Differential
Definitions
Concepts
Rules and identities
Integral
Definitions
Integration by
Series
Convergence tests
Vector
Theorems
Multivariable
Formalisms
Definitions
Advanced
Specialized
Miscellanea

In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series.

Statement

Suppose that we have two series Σ n a n {\displaystyle \Sigma _{n}a_{n}} and Σ n b n {\displaystyle \Sigma _{n}b_{n}} with a n 0 , b n > 0 {\displaystyle a_{n}\geq 0,b_{n}>0} for all n {\displaystyle n} . Then if lim n a n b n = c {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 < c < {\displaystyle 0<c<\infty } , then either both series converge or both series diverge.

Proof

Because lim n a n b n = c {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} we know that for every ε > 0 {\displaystyle \varepsilon >0} there is a positive integer n 0 {\displaystyle n_{0}} such that for all n n 0 {\displaystyle n\geq n_{0}} we have that | a n b n c | < ε {\displaystyle \left|{\frac {a_{n}}{b_{n}}}-c\right|<\varepsilon } , or equivalently

ε < a n b n c < ε {\displaystyle -\varepsilon <{\frac {a_{n}}{b_{n}}}-c<\varepsilon }
c ε < a n b n < c + ε {\displaystyle c-\varepsilon <{\frac {a_{n}}{b_{n}}}<c+\varepsilon }
( c ε ) b n < a n < ( c + ε ) b n {\displaystyle (c-\varepsilon )b_{n}<a_{n}<(c+\varepsilon )b_{n}}

As c > 0 {\displaystyle c>0} we can choose ε {\displaystyle \varepsilon } to be sufficiently small such that c ε {\displaystyle c-\varepsilon } is positive. So b n < 1 c ε a n {\displaystyle b_{n}<{\frac {1}{c-\varepsilon }}a_{n}} and by the direct comparison test, if n a n {\displaystyle \sum _{n}a_{n}} converges then so does n b n {\displaystyle \sum _{n}b_{n}} .

Similarly a n < ( c + ε ) b n {\displaystyle a_{n}<(c+\varepsilon )b_{n}} , so if n a n {\displaystyle \sum _{n}a_{n}} diverges, again by the direct comparison test, so does n b n {\displaystyle \sum _{n}b_{n}} .

That is, both series converge or both series diverge.

Example

We want to determine if the series n = 1 1 n 2 + 2 n {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+2n}}} converges. For this we compare it with the convergent series n = 1 1 n 2 = π 2 6 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}

As lim n 1 n 2 + 2 n n 2 1 = 1 > 0 {\displaystyle \lim _{n\to \infty }{\frac {1}{n^{2}+2n}}{\frac {n^{2}}{1}}=1>0} we have that the original series also converges.

One-sided version

One can state a one-sided comparison test by using limit superior. Let a n , b n 0 {\displaystyle a_{n},b_{n}\geq 0} for all n {\displaystyle n} . Then if lim sup n a n b n = c {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 c < {\displaystyle 0\leq c<\infty } and Σ n b n {\displaystyle \Sigma _{n}b_{n}} converges, necessarily Σ n a n {\displaystyle \Sigma _{n}a_{n}} converges.

Example

Let a n = 1 ( 1 ) n n 2 {\displaystyle a_{n}={\frac {1-(-1)^{n}}{n^{2}}}} and b n = 1 n 2 {\displaystyle b_{n}={\frac {1}{n^{2}}}} for all natural numbers n {\displaystyle n} . Now lim n a n b n = lim n ( 1 ( 1 ) n ) {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\lim _{n\to \infty }(1-(-1)^{n})} does not exist, so we cannot apply the standard comparison test. However, lim sup n a n b n = lim sup n ( 1 ( 1 ) n ) = 2 [ 0 , ) {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\limsup _{n\to \infty }(1-(-1)^{n})=2\in [0,\infty )} and since n = 1 1 n 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}} converges, the one-sided comparison test implies that n = 1 1 ( 1 ) n n 2 {\displaystyle \sum _{n=1}^{\infty }{\frac {1-(-1)^{n}}{n^{2}}}} converges.

Converse of the one-sided comparison test

Let a n , b n 0 {\displaystyle a_{n},b_{n}\geq 0} for all n {\displaystyle n} . If Σ n a n {\displaystyle \Sigma _{n}a_{n}} diverges and Σ n b n {\displaystyle \Sigma _{n}b_{n}} converges, then necessarily lim sup n a n b n = {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\infty } , that is, lim inf n b n a n = 0 {\displaystyle \liminf _{n\to \infty }{\frac {b_{n}}{a_{n}}}=0} . The essential content here is that in some sense the numbers a n {\displaystyle a_{n}} are larger than the numbers b n {\displaystyle b_{n}} .

Example

Let f ( z ) = n = 0 a n z n {\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}} be analytic in the unit disc D = { z C : | z | < 1 } {\displaystyle D=\{z\in \mathbb {C} :|z|<1\}} and have image of finite area. By Parseval's formula the area of the image of f {\displaystyle f} is proportional to n = 1 n | a n | 2 {\displaystyle \sum _{n=1}^{\infty }n|a_{n}|^{2}} . Moreover, n = 1 1 / n {\displaystyle \sum _{n=1}^{\infty }1/n} diverges. Therefore, by the converse of the comparison test, we have lim inf n n | a n | 2 1 / n = lim inf n ( n | a n | ) 2 = 0 {\displaystyle \liminf _{n\to \infty }{\frac {n|a_{n}|^{2}}{1/n}}=\liminf _{n\to \infty }(n|a_{n}|)^{2}=0} , that is, lim inf n n | a n | = 0 {\displaystyle \liminf _{n\to \infty }n|a_{n}|=0} .

See also

References

  1. Swokowski, Earl (1983), Calculus with analytic geometry (Alternate ed.), Prindle, Weber & Schmidt, p. 516, ISBN 0-87150-341-7

Further reading

  • Rinaldo B. Schinazi: From Calculus to Analysis. Springer, 2011, ISBN 9780817682897, pp. 50
  • Michele Longo and Vincenzo Valori: The Comparison Test: Not Just for Nonnegative Series. Mathematics Magazine, Vol. 79, No. 3 (Jun., 2006), pp. 205–210 (JSTOR)
  • J. Marshall Ash: The Limit Comparison Test Needs Positivity. Mathematics Magazine, Vol. 85, No. 5 (December 2012), pp. 374–375 (JSTOR)

External links

Calculus
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Category:
Limit comparison test Add topic