The following is a list of integrals (antiderivative functions) of logarithmic functions . For a complete list of integral functions, see list of integrals .
Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
Integrals involving only logarithmic functions
∫
log
a
x
d
x
=
x
log
a
x
−
x
ln
a
=
x
ln
a
(
ln
x
−
1
)
{\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}={\frac {x}{\ln a}}(\ln x-1)}
∫
ln
(
a
x
)
d
x
=
x
ln
(
a
x
)
−
x
=
x
(
ln
(
a
x
)
−
1
)
{\displaystyle \int \ln(ax)\,dx=x\ln(ax)-x=x(\ln(ax)-1)}
∫
ln
(
a
x
+
b
)
d
x
=
a
x
+
b
a
(
ln
(
a
x
+
b
)
−
1
)
{\displaystyle \int \ln(ax+b)\,dx={\frac {ax+b}{a}}(\ln(ax+b)-1)}
∫
(
ln
x
)
2
d
x
=
x
(
ln
x
)
2
−
2
x
ln
x
+
2
x
{\displaystyle \int (\ln x)^{2}\,dx=x(\ln x)^{2}-2x\ln x+2x}
∫
(
ln
x
)
n
d
x
=
(
−
1
)
n
n
!
x
∑
k
=
0
n
(
−
ln
x
)
k
k
!
{\displaystyle \int (\ln x)^{n}\,dx=(-1)^{n}n!x\sum _{k=0}^{n}{\frac {(-\ln x)^{k}}{k!}}}
∫
d
x
ln
x
=
ln
|
ln
x
|
+
ln
x
+
∑
k
=
2
∞
(
ln
x
)
k
k
⋅
k
!
{\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{k=2}^{\infty }{\frac {(\ln x)^{k}}{k\cdot k!}}}
∫
d
x
ln
x
=
li
(
x
)
{\displaystyle \int {\frac {dx}{\ln x}}=\operatorname {li} (x)}
, the logarithmic integral .
∫
d
x
(
ln
x
)
n
=
−
x
(
n
−
1
)
(
ln
x
)
n
−
1
+
1
n
−
1
∫
d
x
(
ln
x
)
n
−
1
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{(\ln x)^{n}}}=-{\frac {x}{(n-1)(\ln x)^{n-1}}}+{\frac {1}{n-1}}\int {\frac {dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
ln
f
(
x
)
d
x
=
x
ln
f
(
x
)
−
∫
x
f
′
(
x
)
f
(
x
)
d
x
(for differentiable
f
(
x
)
>
0
)
{\displaystyle \int \ln f(x)\,dx=x\ln f(x)-\int x{\frac {f'(x)}{f(x)}}\,dx\qquad {\mbox{(for differentiable }}f(x)>0{\mbox{)}}}
Integrals involving logarithmic and power functions
∫
x
m
ln
x
d
x
=
x
m
+
1
(
ln
x
m
+
1
−
1
(
m
+
1
)
2
)
(for
m
≠
−
1
)
{\displaystyle \int x^{m}\ln x\,dx=x^{m+1}\left({\frac {\ln x}{m+1}}-{\frac {1}{(m+1)^{2}}}\right)\qquad {\mbox{(for }}m\neq -1{\mbox{)}}}
∫
x
m
(
ln
x
)
n
d
x
=
x
m
+
1
(
ln
x
)
n
m
+
1
−
n
m
+
1
∫
x
m
(
ln
x
)
n
−
1
d
x
(for
m
≠
−
1
)
{\displaystyle \int x^{m}(\ln x)^{n}\,dx={\frac {x^{m+1}(\ln x)^{n}}{m+1}}-{\frac {n}{m+1}}\int x^{m}(\ln x)^{n-1}dx\qquad {\mbox{(for }}m\neq -1{\mbox{)}}}
∫
(
ln
x
)
n
d
x
x
=
(
ln
x
)
n
+
1
n
+
1
(for
n
≠
−
1
)
{\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x}}={\frac {(\ln x)^{n+1}}{n+1}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}}
∫
ln
x
d
x
x
m
=
−
ln
x
(
m
−
1
)
x
m
−
1
−
1
(
m
−
1
)
2
x
m
−
1
(for
m
≠
1
)
{\displaystyle \int {\frac {\ln x\,dx}{x^{m}}}=-{\frac {\ln x}{(m-1)x^{m-1}}}-{\frac {1}{(m-1)^{2}x^{m-1}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}
∫
(
ln
x
)
n
d
x
x
m
=
−
(
ln
x
)
n
(
m
−
1
)
x
m
−
1
+
n
m
−
1
∫
(
ln
x
)
n
−
1
d
x
x
m
(for
m
≠
1
)
{\displaystyle \int {\frac {(\ln x)^{n}\,dx}{x^{m}}}=-{\frac {(\ln x)^{n}}{(m-1)x^{m-1}}}+{\frac {n}{m-1}}\int {\frac {(\ln x)^{n-1}dx}{x^{m}}}\qquad {\mbox{(for }}m\neq 1{\mbox{)}}}
∫
x
m
d
x
(
ln
x
)
n
=
−
x
m
+
1
(
n
−
1
)
(
ln
x
)
n
−
1
+
m
+
1
n
−
1
∫
x
m
d
x
(
ln
x
)
n
−
1
(for
n
≠
1
)
{\displaystyle \int {\frac {x^{m}\,dx}{(\ln x)^{n}}}=-{\frac {x^{m+1}}{(n-1)(\ln x)^{n-1}}}+{\frac {m+1}{n-1}}\int {\frac {x^{m}dx}{(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
d
x
x
ln
x
=
ln
|
ln
x
|
{\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|}
∫
d
x
x
ln
x
ln
ln
x
=
ln
|
ln
|
ln
x
|
|
{\displaystyle \int {\frac {dx}{x\ln x\ln \ln x}}=\ln \left|\ln \left|\ln x\right|\right|}
, etc.
∫
d
x
x
ln
ln
x
=
li
(
ln
x
)
{\displaystyle \int {\frac {dx}{x\ln \ln x}}=\operatorname {li} (\ln x)}
∫
d
x
x
n
ln
x
=
ln
|
ln
x
|
+
∑
k
=
1
∞
(
−
1
)
k
(
n
−
1
)
k
(
ln
x
)
k
k
⋅
k
!
{\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}}
∫
d
x
x
(
ln
x
)
n
=
−
1
(
n
−
1
)
(
ln
x
)
n
−
1
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{x(\ln x)^{n}}}=-{\frac {1}{(n-1)(\ln x)^{n-1}}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
ln
(
x
2
+
a
2
)
d
x
=
x
ln
(
x
2
+
a
2
)
−
2
x
+
2
a
tan
−
1
x
a
{\displaystyle \int \ln(x^{2}+a^{2})\,dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}}
∫
x
x
2
+
a
2
ln
(
x
2
+
a
2
)
d
x
=
1
4
ln
2
(
x
2
+
a
2
)
{\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\,dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})}
Integrals involving logarithmic and trigonometric functions
∫
sin
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
−
cos
(
ln
x
)
)
{\displaystyle \int \sin(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}
∫
cos
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
+
cos
(
ln
x
)
)
{\displaystyle \int \cos(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}
Integrals involving logarithmic and exponential functions
∫
e
x
(
x
ln
x
−
x
−
1
x
)
d
x
=
e
x
(
x
ln
x
−
x
−
ln
x
)
{\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\,dx=e^{x}(x\ln x-x-\ln x)}
∫
1
e
x
(
1
x
−
ln
x
)
d
x
=
ln
x
e
x
{\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\,dx={\frac {\ln x}{e^{x}}}}
∫
e
x
(
1
ln
x
−
1
x
(
ln
x
)
2
)
d
x
=
e
x
ln
x
{\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x(\ln x)^{2}}}\right)\,dx={\frac {e^{x}}{\ln x}}}
n consecutive integrations
For
n
{\displaystyle n}
consecutive integrations, the formula
∫
ln
x
d
x
=
x
(
ln
x
−
1
)
+
C
0
{\displaystyle \int \ln x\,dx=x(\ln x-1)+C_{0}}
generalizes to
∫
⋯
∫
ln
x
d
x
⋯
d
x
=
x
n
n
!
(
ln
x
−
∑
k
=
1
n
1
k
)
+
∑
k
=
0
n
−
1
C
k
x
k
k
!
{\displaystyle \int \dotsi \int \ln x\,dx\dotsm dx={\frac {x^{n}}{n!}}\left(\ln \,x-\sum _{k=1}^{n}{\frac {1}{k}}\right)+\sum _{k=0}^{n-1}C_{k}{\frac {x^{k}}{k!}}}
See also
References
Category :
List of integrals of logarithmic functions
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑