Misplaced Pages

Cav1.2

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from CACNA1C)

Protein-coding gene in humans
CACNA1C
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1T0J, 2BE6, 2F3Z, 2LQC, 3G43, 3OXQ

Identifiers
AliasesCACNA1C, CACH2, CACN2, CACNL1A1, CCHL1A1, CaV1.2, LQT8, TS, calcium voltage-gated channel subunit alpha1 C, TS. LQT8
External IDsOMIM: 114205; MGI: 103013; HomoloGene: 55484; GeneCards: CACNA1C; OMA:CACNA1C - orthologs
Gene location (Human)
Chromosome 12 (human)
Chr.Chromosome 12 (human)
Chromosome 12 (human)Genomic location for CACNA1CGenomic location for CACNA1C
Band12p13.33Start1,970,772 bp
End2,697,950 bp
Gene location (Mouse)
Chromosome 6 (mouse)
Chr.Chromosome 6 (mouse)
Chromosome 6 (mouse)Genomic location for CACNA1CGenomic location for CACNA1C
Band6 F1|6 55.86 cMStart118,564,201 bp
End119,173,851 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • apex of heart

  • right coronary artery

  • muscle layer of sigmoid colon

  • left ventricle

  • body of uterus

  • right auricle

  • myometrium

  • smooth muscle tissue

  • popliteal artery

  • tibial arteries
Top expressed in
  • cardiac muscle tissue of left ventricle

  • interventricular septum

  • right ventricle

  • Rostral migratory stream

  • medial dorsal nucleus

  • lateral geniculate nucleus

  • atrium

  • medial geniculate nucleus

  • olfactory tubercle

  • dentate gyrus of hippocampal formation granule cell
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

775

12288

Ensembl

ENSG00000151067
ENSG00000285479

ENSMUSG00000051331

UniProt

Q13936

Q01815

RefSeq (mRNA)
NM_000719
NM_001129827
NM_001129829
NM_001129830
NM_001129831

NM_001129832
NM_001129833
NM_001129834
NM_001129835
NM_001129836
NM_001129837
NM_001129838
NM_001129839
NM_001129840
NM_001129841
NM_001129842
NM_001129843
NM_001129844
NM_001129846
NM_001167623
NM_001167624
NM_001167625
NM_199460

NM_001159533
NM_001159534
NM_001159535
NM_001255997
NM_001255998

NM_001255999
NM_001256000
NM_001256001
NM_001256002
NM_009781
NM_001290335

RefSeq (protein)
NP_000710
NP_001123299
NP_001123301
NP_001123302
NP_001123303

NP_001123304
NP_001123305
NP_001123306
NP_001123307
NP_001123308
NP_001123309
NP_001123310
NP_001123311
NP_001123312
NP_001123313
NP_001123314
NP_001123315
NP_001123316
NP_001123318
NP_001161095
NP_001161096
NP_001161097
NP_955630

NP_001153005
NP_001153006
NP_001153007
NP_001242926
NP_001242927

NP_001242928
NP_001242929
NP_001242930
NP_001242931
NP_001277264
NP_033911

Location (UCSC)Chr 12: 1.97 – 2.7 MbChr 6: 118.56 – 119.17 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Calcium channel, voltage-dependent, L type, alpha 1C subunit (also known as Cav1.2) is a protein that in humans is encoded by the CACNA1C gene. Cav1.2 is a subunit of L-type voltage-dependent calcium channel.

Structure and function

This gene encodes an alpha-1 subunit of a voltage-dependent calcium channel. Calcium channels mediate the influx of calcium ions (Ca) into the cell upon membrane polarization (see membrane potential and calcium in biology).

The alpha-1 subunit consists of 24 transmembrane segments and forms the pore through which ions pass into the cell. The calcium channel consists of a complex of alpha-1, alpha-2/delta and beta subunits in a 1:1:1 ratio. The S3-S4 linkers of Cav1.2 determine the gating phenotype and modulated gating kinetics of the channel. Cav1.2 is widely expressed in the smooth muscle, pancreatic cells, fibroblasts, and neurons. However, it is particularly important and well known for its expression in the heart where it mediates L-type currents, which causes calcium-induced calcium release from the ER Stores via ryanodine receptors. It depolarizes at -30mV and helps define the shape of the action potential in cardiac and smooth muscle. The protein encoded by this gene binds to and is inhibited by dihydropyridine. In the arteries of the brain, high levels of calcium in mitochondria elevates activity of nuclear factor kappa B NF-κB and transcription of CACNA1c and functional Cav1.2 expression increases. Cav1.2 also regulates levels of osteoprotegerin.

CaV1.2 is inhibited by the action of STIM1.

Regulation

The activity of CaV1.2 channels is tightly regulated by the Ca signals they produce. An increase in intracellular Ca concentration implicated in Cav1.2 facilitation, a form of positive feedback called Ca-dependent facilitation, that amplifies Ca influx. In addition, increasing influx intracellular Ca concentration has implicated to exert the opposite effect Ca2+ dependent inactivation. These activation and inactivation mechanisms both involve Ca binding to calmodulin (CaM) in the IQ domain in the C-terminal tail of these channels. Cav1.2 channels are arranged in cluster of eight, on average, in the cell membrane. When calcium ions bind to calmodulin, which in turn binds to a Cav1.2 channel, it allows the Cav1.2 channels within a cluster to interact with each other. This results in channels working cooperatively when they open at the same time to allow more calcium ions to enter and then close together to allow the cell to relax.

Due to simplicity only two Calcium channels are shown to depict clustering. When depolarization occurs, calcium ions flow through the channel and some bind to Calmodulin. The Calcium/Calmodulin binding to the C-terminal pre-IQ domain of the Cav1.2 channel promotes interaction between channels that are beside each other.

Clinical significance

Mutation in the CACNA1C gene, the single-nucleotide polymorphism located in the third intron of the Cav1.2 gene, are associated with a variant of Long QT syndrome called Timothy's syndrome and more broadly with other CACNA1C-related disorders, and also with Brugada syndrome. Large-scale genetic analyses have shown the possibility that CACNA1C is associated with bipolar disorder and subsequently also with schizophrenia. Also, a CACNA1C risk allele has been associated to a disruption in brain connectivity in patients with bipolar disorder, while not or only to a minor degree, in their unaffected relatives or healthy controls. In a first study in Indian population, the Schizophrenia associated Genome-wide association study (GWAS) SNP was found not to be associated with the disease. Furthermore, the main effect of rs1006737 was found to be associated with spatial abilityefficiency scores. Subjects with genotypes carrying the risk allele of rs1006737 (G/A and A/A) were found to have higher spatial abilityefficiency scores as compared to those with the G/G genotype. While in healthy controls those with G/A and A/A genotypes were found to have higher spatial memoryprocessing speed scores than those with G/G genotypes, the former had lower scores than the latter in schizophrenia subjects. In the same study the genotypes with the risk allele of rs1006737 namely A/A was associated with a significantly lower Align rank transformed Abnormal and involuntary movement scale(AIMS) scores of Tardive dyskinesia(TD).

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective Misplaced Pages articles.

[[File:
NicotineActivityonChromaffinCells_WP1603Go to articlego to articleGo to articleGo to articleGo to articleGo to articlego to articlego to articleGo to articleGo to articlego to articleGo to articleGo to article
] ] ] ] ] ] ] ] ] ] ] ] ] ]
NicotineActivityonChromaffinCells_WP1603Go to articlego to articleGo to articleGo to articleGo to articleGo to articlego to articlego to articleGo to articleGo to articlego to articleGo to articleGo to article
|alt=Nicotine Activity on Chromaffin Cells edit]] Nicotine Activity on Chromaffin Cells edit
  1. The interactive pathway map can be edited at WikiPathways: "NicotineActivityonChromaffinCells_WP1603".

See also

References

  1. ^ ENSG00000285479 GRCh38: Ensembl release 89: ENSG00000151067, ENSG00000285479Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000051331Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lacerda AE, Kim HS, Ruth P, Perez-Reyes E, Flockerzi V, Hofmann F, Birnbaumer L, Brown AM (Aug 1991). "Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel". Nature. 352 (6335): 527–30. Bibcode:1991Natur.352..527L. doi:10.1038/352527a0. PMID 1650913. S2CID 4246540.
  6. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (Dec 2005). "International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels". Pharmacological Reviews. 57 (4): 411–25. doi:10.1124/pr.57.4.5. PMID 16382099. S2CID 10386627.
  7. Shaw RM, Colecraft HM (May 2013). "L-type calcium channel targeting and local signalling in cardiac myocytes". Cardiovascular Research. 98 (2): 177–86. doi:10.1093/cvr/cvt021. PMC 3633156. PMID 23417040.
  8. ^ Lipscombe D, Helton TD, Xu W (Nov 2004). "L-type calcium channels: the low down". Journal of Neurophysiology. 92 (5): 2633–41. doi:10.1152/jn.00486.2004. PMID 15486420. S2CID 52887174.
  9. Christel C, Lee A (Aug 2012). "Ca2+-dependent modulation of voltage-gated Ca2+ channels". Biochimica et Biophysica Acta (BBA) - General Subjects. 1820 (8): 1243–52. doi:10.1016/j.bbagen.2011.12.012. PMC 3345169. PMID 22223119.
  10. Berger SM, Bartsch D (Aug 2014). "The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function". Cell and Tissue Research. 357 (2): 463–76. doi:10.1007/s00441-014-1936-3. PMID 24996399. S2CID 15914718.
  11. "Entrez Gene: voltage-dependent, L type, alpha 1C subunit".
  12. Narayanan D, Xi Q, Pfeffer LM, Jaggar JH (Sep 2010). "Mitochondria control functional CaV1.2 expression in smooth muscle cells of cerebral arteries". Circulation Research. 107 (5): 631–41. doi:10.1161/CIRCRESAHA.110.224345. PMC 3050675. PMID 20616314.
  13. Bergh JJ, Xu Y, Farach-Carson MC (Jan 2004). "Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel". Endocrinology. 145 (1): 426–36. doi:10.1210/en.2003-0319. PMID 14525906.
  14. Cahalan MD (Oct 2010). "Cell biology. How to STIMulate calcium channels". Science. 330 (6000): 43–4. doi:10.1126/science.1196348. PMC 3133971. PMID 20929798.
  15. Isaev D, Solt K, Gurtovaya O, Reeves JP, Shirokov R (May 2004). "Modulation of the voltage sensor of L-type Ca2+ channels by intracellular Ca2+". The Journal of General Physiology. 123 (5): 555–71. doi:10.1085/jgp.200308876. PMC 2234499. PMID 15111645.
  16. Kim EY, Rumpf CH, Van Petegem F, Arant RJ, Findeisen F, Cooley ES, Isacoff EY, Minor DL (Dec 2010). "Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization". The EMBO Journal. 29 (23): 3924–38. doi:10.1038/emboj.2010.260. PMC 3020648. PMID 20953164.
  17. ^ Dixon RE, Moreno CM, Yuan C, Opitz-Araya X, Binder MD, Navedo MF, Santana LF (2015). "Graded Ca²⁺/calmodulin-dependent coupling of voltage-gated CaV1.2 channels". eLife. 4. doi:10.7554/eLife.05608. PMC 4360655. PMID 25714924.
  18. Imbrici P, Camerino DC, Tricarico D (2013-05-07). "Major channels involved in neuropsychiatric disorders and therapeutic perspectives". Frontiers in Genetics. 4: 76. doi:10.3389/fgene.2013.00076. PMC 3646240. PMID 23675382.
  19. ^ Napolitano C, Timothy KW, Bloise R, Priori SG (1993). Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, Amemiya A (eds.). CACNA1C-Related Disorders. Seattle (WA): University of Washington, Seattle. PMID 20301577. Retrieved 2022-12-12. {{cite book}}: |work= ignored (help)
  20. Hedley PL, Jørgensen P, Schlamowitz S, Moolman-Smook J, Kanters JK, Corfield VA, Christiansen M (Sep 2009). "The genetic basis of Brugada syndrome: a mutation update". Human Mutation. 30 (9): 1256–66. doi:10.1002/humu.21066. PMID 19606473. S2CID 25207473.
  21. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. (Sep 2008). "Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder". Nature Genetics. 40 (9): 1056–8. doi:10.1038/ng.209. PMC 2703780. PMID 18711365.
  22. Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S, Gordon-Smith K, Fraser C, Forty L, Russell E, Hamshere ML, Moskvina V, Nikolov I, Farmer A, McGuffin P, Holmans PA, Owen MJ, O'Donovan MC, Craddock N (Oct 2010). "The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia". Molecular Psychiatry. 15 (10): 1016–22. doi:10.1038/mp.2009.49. PMC 3011210. PMID 19621016.
  23. Curtis D, Vine AE, McQuillin A, Bass NJ, Pereira A, Kandaswamy R, Lawrence J, Anjorin A, Choudhury K, Datta SR, Puri V, Krasucki R, Pimm J, Thirumalai S, Quested D, Gurling HM (Feb 2011). "Case-case genome-wide association analysis shows markers differentially associated with schizophrenia and bipolar disorder and implicates calcium channel genes". Psychiatric Genetics. 21 (1): 1–4. doi:10.1097/YPG.0b013e3283413382. PMC 3024533. PMID 21057379.
  24. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014-07-24). "Biological insights from 108 schizophrenia-associated genetic loci". Nature. 511 (7510): 421–427. Bibcode:2014Natur.511..421S. doi:10.1038/nature13595. ISSN 1476-4687. PMC 4112379. PMID 25056061.
  25. Radua J, Surguladze SA, Marshall N, Walshe M, Bramon E, Collier DA, Prata DP, Murray RM, McDonald C (May 2013). "The impact of CACNA1C allelic variation on effective connectivity during emotional processing in bipolar disorder". Molecular Psychiatry. 18 (5): 526–7. doi:10.1038/mp.2012.61. PMID 22614292.
  26. Punchaichira TJ, Kukshal P, Bhatia T, Deshpande SN (2023). "Effect of rs1108580 of DBH and rs1006737 of CACNA1C on Cognition and Tardive Dyskinesia in a North Indian Schizophrenia Cohort". Molecular Neurobiology. 60 (12): 6826–6839. doi:10.1007/s12035-023-03496-4. PMID 37493923. S2CID 260162784.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

PDB gallery
  • 2be6: 2.0 A crystal structure of the CaV1.2 IQ domain-Ca/CaM complex 2be6: 2.0 A crystal structure of the CaV1.2 IQ domain-Ca/CaM complex
Membrane transport protein: ion channels (TC 1A)
Ca: Calcium channel
Ligand-gated
Voltage-gated
Na: Sodium channel
Constitutively active
Proton-gated
Voltage-gated
K: Potassium channel
Calcium-activated
Inward-rectifier
Tandem pore domain
Voltage-gated
Miscellaneous
Cl: Chloride channel
H: Proton channel
M: CNG cation channel
M: TRP cation channel
H2O (+ solutes): Porin
Cytoplasm: Gap junction
By gating mechanism
Ion channel class
see also disorders
Categories:
Cav1.2 Add topic