Misplaced Pages

Yoneda product

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In algebra, the Yoneda product (named after Nobuo Yoneda) is the pairing between Ext groups of modules: Ext n ( M , N ) Ext m ( L , M ) Ext n + m ( L , N ) {\displaystyle \operatorname {Ext} ^{n}(M,N)\otimes \operatorname {Ext} ^{m}(L,M)\to \operatorname {Ext} ^{n+m}(L,N)} induced by Hom ( N , M ) Hom ( M , L ) Hom ( N , L ) , f g g f . {\displaystyle \operatorname {Hom} (N,M)\otimes \operatorname {Hom} (M,L)\to \operatorname {Hom} (N,L),\,f\otimes g\mapsto g\circ f.}

Specifically, for an element ξ Ext n ( M , N ) {\displaystyle \xi \in \operatorname {Ext} ^{n}(M,N)} , thought of as an extension ξ : 0 N E 0 E n 1 M 0 , {\displaystyle \xi :0\rightarrow N\rightarrow E_{0}\rightarrow \cdots \rightarrow E_{n-1}\rightarrow M\rightarrow 0,} and similarly ρ : 0 M F 0 F m 1 L 0 Ext m ( L , M ) , {\displaystyle \rho :0\rightarrow M\rightarrow F_{0}\rightarrow \cdots \rightarrow F_{m-1}\rightarrow L\rightarrow 0\in \operatorname {Ext} ^{m}(L,M),} we form the Yoneda (cup) product ξ ρ : 0 N E 0 E n 1 F 0 F m 1 L 0 Ext m + n ( L , N ) . {\displaystyle \xi \smile \rho :0\rightarrow N\rightarrow E_{0}\rightarrow \cdots \rightarrow E_{n-1}\rightarrow F_{0}\rightarrow \cdots \rightarrow F_{m-1}\rightarrow L\rightarrow 0\in \operatorname {Ext} ^{m+n}(L,N).}

Note that the middle map E n 1 F 0 {\displaystyle E_{n-1}\rightarrow F_{0}} factors through the given maps to M {\displaystyle M} .

We extend this definition to include m , n = 0 {\displaystyle m,n=0} using the usual functoriality of the Ext ( , ) {\displaystyle \operatorname {Ext} ^{*}(\cdot ,\cdot )} groups.

Applications

Ext Algebras

Given a commutative ring R {\displaystyle R} and a module M {\displaystyle M} , the Yoneda product defines a product structure on the groups Ext ( M , M ) {\displaystyle {\text{Ext}}^{\bullet }(M,M)} , where Ext 0 ( M , M ) = Hom R ( M , M ) {\displaystyle {\text{Ext}}^{0}(M,M)={\text{Hom}}_{R}(M,M)} is generally a non-commutative ring. This can be generalized to the case of sheaves of modules over a ringed space, or ringed topos.

Grothendieck duality

In Grothendieck's duality theory of coherent sheaves on a projective scheme i : X P k n {\displaystyle i:X\hookrightarrow \mathbb {P} _{k}^{n}} of pure dimension r {\displaystyle r} over an algebraically closed field k {\displaystyle k} , there is a pairing Ext O X p ( O X , F ) × Ext O X r p ( F , ω X ) k {\displaystyle {\text{Ext}}_{{\mathcal {O}}_{X}}^{p}({\mathcal {O}}_{X},{\mathcal {F}})\times {\text{Ext}}_{{\mathcal {O}}_{X}}^{r-p}({\mathcal {F}},\omega _{X}^{\bullet })\to k} where ω X {\displaystyle \omega _{X}} is the dualizing complex ω X = E x t O P n r ( i F , ω P ) {\displaystyle \omega _{X}={\mathcal {Ext}}_{{\mathcal {O}}_{\mathbb {P} }}^{n-r}(i_{*}{\mathcal {F}},\omega _{\mathbb {P} })} and ω P = O P ( ( n + 1 ) ) {\displaystyle \omega _{\mathbb {P} }={\mathcal {O}}_{\mathbb {P} }(-(n+1))} given by the Yoneda pairing.

Deformation theory

The Yoneda product is useful for understanding the obstructions to a deformation of maps of ringed topoi. For example, given a composition of ringed topoi X f Y S {\displaystyle X\xrightarrow {f} Y\to S} and an S {\displaystyle S} -extension j : Y Y {\displaystyle j:Y\to Y'} of Y {\displaystyle Y} by an O Y {\displaystyle {\mathcal {O}}_{Y}} -module J {\displaystyle J} , there is an obstruction class ω ( f , j ) Ext 2 ( L X / Y , f J ) {\displaystyle \omega (f,j)\in {\text{Ext}}^{2}(\mathbf {L} _{X/Y},f^{*}J)} which can be described as the yoneda product ω ( f , j ) = f ( e ( j ) ) K ( X / Y / S ) {\displaystyle \omega (f,j)=f^{*}(e(j))\cdot K(X/Y/S)} where K ( X / Y / S ) Ext 1 ( L X / Y , L Y / S ) f ( e ( j ) ) Ext 1 ( f L Y / S , f J ) {\displaystyle {\begin{aligned}K(X/Y/S)&\in {\text{Ext}}^{1}(\mathbf {L} _{X/Y},\mathbf {L} _{Y/S})\\f^{*}(e(j))&\in {\text{Ext}}^{1}(f^{*}\mathbf {L} _{Y/S},f^{*}J)\end{aligned}}} and L X / Y {\displaystyle \mathbf {L} _{X/Y}} corresponds to the cotangent complex.

See also

References

  1. Altman; Kleiman (1970). Grothendieck Duality. Lecture Notes in Mathematics. Vol. 146. p. 5. doi:10.1007/BFb0060932. ISBN 978-3-540-04935-7.
  2. Illusie, Luc. "Complexe cotangent; application a la theorie des deformations" (PDF). p. 163.

External links

Category:
Yoneda product Add topic