Misplaced Pages

Vitali–Hahn–Saks theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Vitali–Hahn–Saks theorem, introduced by Vitali (1907), Hahn (1922), and Saks (1933), proves that under some conditions a sequence of measures converging point-wise does so uniformly and the limit is also a measure.

Statement of the theorem

If ( S , B , m ) {\displaystyle (S,{\mathcal {B}},m)} is a measure space with m ( S ) < , {\displaystyle m(S)<\infty ,} and a sequence λ n {\displaystyle \lambda _{n}} of complex measures. Assuming that each λ n {\displaystyle \lambda _{n}} is absolutely continuous with respect to m , {\displaystyle m,} and that a for all B B {\displaystyle B\in {\mathcal {B}}} the finite limits exist lim n λ n ( B ) = λ ( B ) . {\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B).} Then the absolute continuity of the λ n {\displaystyle \lambda _{n}} with respect to m {\displaystyle m} is uniform in n , {\displaystyle n,} that is, lim B m ( B ) = 0 {\displaystyle \lim _{B}m(B)=0} implies that lim B λ n ( B ) = 0 {\displaystyle \lim _{B}\lambda _{n}(B)=0} uniformly in n . {\displaystyle n.} Also λ {\displaystyle \lambda } is countably additive on B . {\displaystyle {\mathcal {B}}.}

Preliminaries

Given a measure space ( S , B , m ) , {\displaystyle (S,{\mathcal {B}},m),} a distance can be constructed on B 0 , {\displaystyle {\mathcal {B}}_{0},} the set of measurable sets B B {\displaystyle B\in {\mathcal {B}}} with m ( B ) < . {\displaystyle m(B)<\infty .} This is done by defining

d ( B 1 , B 2 ) = m ( B 1 Δ B 2 ) , {\displaystyle d(B_{1},B_{2})=m(B_{1}\Delta B_{2}),} where B 1 Δ B 2 = ( B 1 B 2 ) ( B 2 B 1 ) {\displaystyle B_{1}\Delta B_{2}=(B_{1}\setminus B_{2})\cup (B_{2}\setminus B_{1})} is the symmetric difference of the sets B 1 , B 2 B 0 . {\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}.}

This gives rise to a metric space B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} by identifying two sets B 1 , B 2 B 0 {\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}} when m ( B 1 Δ B 2 ) = 0. {\displaystyle m(B_{1}\Delta B_{2})=0.} Thus a point B ¯ B 0 ~ {\displaystyle {\overline {B}}\in {\tilde {{\mathcal {B}}_{0}}}} with representative B B 0 {\displaystyle B\in {\mathcal {B}}_{0}} is the set of all B 1 B 0 {\displaystyle B_{1}\in {\mathcal {B}}_{0}} such that m ( B Δ B 1 ) = 0. {\displaystyle m(B\Delta B_{1})=0.}

Proposition: B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} with the metric defined above is a complete metric space.

Proof: Let χ B ( x ) = { 1 , x B 0 , x B {\displaystyle \chi _{B}(x)={\begin{cases}1,&x\in B\\0,&x\notin B\end{cases}}} Then d ( B 1 , B 2 ) = S | χ B 1 ( s ) χ B 2 ( x ) | d m {\displaystyle d(B_{1},B_{2})=\int _{S}|\chi _{B_{1}}(s)-\chi _{B_{2}}(x)|dm} This means that the metric space B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} can be identified with a subset of the Banach space L 1 ( S , B , m ) {\displaystyle L^{1}(S,{\mathcal {B}},m)} .

Let B n B 0 {\displaystyle B_{n}\in {\mathcal {B}}_{0}} , with lim n , k d ( B n , B k ) = lim n , k S | χ B n ( x ) χ B k ( x ) | d m = 0 {\displaystyle \lim _{n,k\to \infty }d(B_{n},B_{k})=\lim _{n,k\to \infty }\int _{S}|\chi _{B_{n}}(x)-\chi _{B_{k}}(x)|dm=0} Then we can choose a sub-sequence χ B n {\displaystyle \chi _{B_{n'}}} such that lim n χ B n ( x ) = χ ( x ) {\displaystyle \lim _{n'\to \infty }\chi _{B_{n'}}(x)=\chi (x)} exists almost everywhere and lim n S | χ ( x ) χ B n ( x ) | d m = 0 {\displaystyle \lim _{n'\to \infty }\int _{S}|\chi (x)-\chi _{B_{n'}(x)}|dm=0} . It follows that χ = χ B {\displaystyle \chi =\chi _{B_{\infty }}} for some B B 0 {\displaystyle B_{\infty }\in {\mathcal {B}}_{0}} (furthermore χ ( x ) = 1 {\displaystyle \chi (x)=1} if and only if χ B n ( x ) = 1 {\displaystyle \chi _{B_{n'}}(x)=1} for n {\displaystyle n'} large enough, then we have that B = lim inf n B n = n = 1 ( m = n B m ) {\displaystyle B_{\infty }=\liminf _{n'\to \infty }B_{n'}={\bigcup _{n'=1}^{\infty }}\left({\bigcap _{m=n'}^{\infty }}B_{m}\right)} the limit inferior of the sequence) and hence lim n d ( B , B n ) = 0. {\displaystyle \lim _{n\to \infty }d(B_{\infty },B_{n})=0.} Therefore, B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} is complete.

Proof of Vitali-Hahn-Saks theorem

Each λ n {\displaystyle \lambda _{n}} defines a function λ ¯ n ( B ¯ ) {\displaystyle {\overline {\lambda }}_{n}({\overline {B}})} on B ~ {\displaystyle {\tilde {\mathcal {B}}}} by taking λ ¯ n ( B ¯ ) = λ n ( B ) {\displaystyle {\overline {\lambda }}_{n}({\overline {B}})=\lambda _{n}(B)} . This function is well defined, this is it is independent on the representative B {\displaystyle B} of the class B ¯ {\displaystyle {\overline {B}}} due to the absolute continuity of λ n {\displaystyle \lambda _{n}} with respect to m {\displaystyle m} . Moreover λ ¯ n {\displaystyle {\overline {\lambda }}_{n}} is continuous.

For every ϵ > 0 {\displaystyle \epsilon >0} the set F k , ϵ = { B ¯ B ~ :   sup n 1 | λ ¯ k ( B ¯ ) λ ¯ k + n ( B ¯ ) | ϵ } {\displaystyle F_{k,\epsilon }=\{{\overline {B}}\in {\tilde {\mathcal {B}}}:\ \sup _{n\geq 1}|{\overline {\lambda }}_{k}({\overline {B}})-{\overline {\lambda }}_{k+n}({\overline {B}})|\leq \epsilon \}} is closed in B ~ {\displaystyle {\tilde {\mathcal {B}}}} , and by the hypothesis lim n λ n ( B ) = λ ( B ) {\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)} we have that B ~ = k = 1 F k , ϵ {\displaystyle {\tilde {\mathcal {B}}}=\bigcup _{k=1}^{\infty }F_{k,\epsilon }} By Baire category theorem at least one F k 0 , ϵ {\displaystyle F_{k_{0},\epsilon }} must contain a non-empty open set of B ~ {\displaystyle {\tilde {\mathcal {B}}}} . This means that there is B 0 ¯ B ~ {\displaystyle {\overline {B_{0}}}\in {\tilde {\mathcal {B}}}} and a δ > 0 {\displaystyle \delta >0} such that d ( B , B 0 ) < δ {\displaystyle d(B,B_{0})<\delta } implies sup n 1 | λ ¯ k 0 ( B ¯ ) λ ¯ k 0 + n ( B ¯ ) | ϵ {\displaystyle \sup _{n\geq 1}|{\overline {\lambda }}_{k_{0}}({\overline {B}})-{\overline {\lambda }}_{k_{0}+n}({\overline {B}})|\leq \epsilon } On the other hand, any B B {\displaystyle B\in {\mathcal {B}}} with m ( B ) δ {\displaystyle m(B)\leq \delta } can be represented as B = B 1 B 2 {\displaystyle B=B_{1}\setminus B_{2}} with d ( B 1 , B 0 ) δ {\displaystyle d(B_{1},B_{0})\leq \delta } and d ( B 2 , B 0 ) δ {\displaystyle d(B_{2},B_{0})\leq \delta } . This can be done, for example by taking B 1 = B B 0 {\displaystyle B_{1}=B\cup B_{0}} and B 2 = B 0 ( B B 0 ) {\displaystyle B_{2}=B_{0}\setminus (B\cap B_{0})} . Thus, if m ( B ) δ {\displaystyle m(B)\leq \delta } and k k 0 {\displaystyle k\geq k_{0}} then | λ k ( B ) | | λ k 0 ( B ) | + | λ k 0 ( B ) λ k ( B ) | | λ k 0 ( B ) | + | λ k 0 ( B 1 ) λ k ( B 1 ) | + | λ k 0 ( B 2 ) λ k ( B 2 ) | | λ k 0 ( B ) | + 2 ϵ {\displaystyle {\begin{aligned}|\lambda _{k}(B)|&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B)-\lambda _{k}(B)|\\&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B_{1})-\lambda _{k}(B_{1})|+|\lambda _{k_{0}}(B_{2})-\lambda _{k}(B_{2})|\\&\leq |\lambda _{k_{0}}(B)|+2\epsilon \end{aligned}}} Therefore, by the absolute continuity of λ k 0 {\displaystyle \lambda _{k_{0}}} with respect to m {\displaystyle m} , and since ϵ {\displaystyle \epsilon } is arbitrary, we get that m ( B ) 0 {\displaystyle m(B)\to 0} implies λ n ( B ) 0 {\displaystyle \lambda _{n}(B)\to 0} uniformly in n . {\displaystyle n.} In particular, m ( B ) 0 {\displaystyle m(B)\to 0} implies λ ( B ) 0. {\displaystyle \lambda (B)\to 0.}

By the additivity of the limit it follows that λ {\displaystyle \lambda } is finitely-additive. Then, since lim m ( B ) 0 λ ( B ) = 0 {\displaystyle \lim _{m(B)\to 0}\lambda (B)=0} it follows that λ {\displaystyle \lambda } is actually countably additive.

References

Measure theory
Basic concepts
Sets
Types of measures
Particular measures
Maps
Main results
Other results
For Lebesgue measure
Applications & related
Category:
Vitali–Hahn–Saks theorem Add topic