Misplaced Pages

Virtual state

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Virtual State (physics)) In quantum physics, a very short-lived, unobservable quantum state For the metastable state of a certain class of Feshbach resonance, see Feshbach resonance § Unstable state.

Energy-level diagram showing the states involved in Raman spectra, including virtual energy states.

In quantum physics, a virtual state is a very short-lived, unobservable quantum state.

In many quantum processes a virtual state is an intermediate state, sometimes described as "imaginary" in a multi-step process that mediates otherwise forbidden transitions. Since virtual states are not eigenfunctions of any operator, normal parameters such as occupation, energy and lifetime need to be qualified. No measurement of a system will show one to be occupied, but they still have lifetimes derived from uncertainty relations. While each virtual state has an associated energy, no direct measurement of its energy is possible but various approaches have been used to make some measurements (for example see and related work on virtual state spectroscopy) or extract other parameters using measurement techniques that depend upon the virtual state's lifetime. The concept is quite general and can be used to predict and describe experimental results in many areas including Raman spectroscopy, non-linear optics generally, various types of photochemistry, and nuclear processes.

See also

References

  1. "A glossary of terms in nuclear science and technology". Conference on Glossary of Terms in Nuclear Science and Technology. A series of nine sections. American Society of Mechanical Engineers. 1953. p. 61. {{cite book}}: |work= ignored (help)
  2. Robinson AL (February 1985). "Tunable Far IR Molecular Lasers Developed: Stimulated Raman scattering associated with a series of closely spaced rotational states is the key to wavelength tunability". Science. 227 (4688). New York, N.Y.: 736–7. doi:10.1126/science.227.4688.736. PMID 17796721.
  3. Masters BR (2008). "Historical Development of Non-linear Optical Microscopy and Spectroscopy". In Masters BR, So P (eds.). Handbook of Biomedical Nonlinear Optical Microscopy. US: Oxford University Press. p. 10. ISBN 978-0-19-516260-8.
  4. Wardle, David (1999). Raman scattering in optical fibres (Thesis). p. 22. hdl:2292/433.
  5. ^ Abbi SC, Ahmad SA, eds. (2001). Nonlinear Optics and Laser Spectroscopy. Alpha Science International, Limited. p. 139. ISBN 978-81-7319-354-5.
  6. Norman P, Ruud K (2006). "Microscopic theory of nonlinear optics.". In Papadopoulos MG, Sadlej AJ, Leszczynski J (eds.). Non-Linear Optical Properties of Matter. Dordrecht: Springer. p. 3. ISBN 978-1-4020-4849-4.
  7. Belkic D (2004). "The Dyson Perturbation Expansion of the Evolution Operator". Principles of quantum scattering theory. CRC Press. p. 70. ISBN 978-0-7503-0496-2.
  8. Saleh BE, Jost BM, Fei HB, Teich MC (April 1998). "Entangled-Photon Virtual-State Spectroscopy" (PDF). Physical Review Letters. 80 (16): 3483–3486. Bibcode:1998PhRvL..80.3483S. doi:10.1103/PhysRevLett.80.3483.
  9. Kojima J, Nguyen QV (1 October 2004). "Entangled biphoton virtual-state spectroscopy of the A2Σ+–X2Π system of OH". Chemical Physics Letters. 396 (4): 323–328. Bibcode:2004CPL...396..323K. doi:10.1016/j.cplett.2004.08.051.
  10. Lee DI, Goodson III T (2007). Nunzi JM (ed.). "Quantum spectroscopy of an organic material utilizing entangled and correlated photon pairs". Linear and Nonlinear Optics of Organic Materials VII. 6653. International Society for Optics and Photonics: 66530V. Bibcode:2007SPIE.6653E..0VL. doi:10.1117/12.745492. S2CID 122068309.
  11. Boitier F, Godard A, Rosencher E, Fabre C (13 April 2009). "Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors". Nature Physics. 5 (4): 267–270. Bibcode:2009NatPh...5..267B. doi:10.1038/nphys1218.
  12. Griffiths PR, De Haseth JA (2007). Fourier Transform Infrared Spectrometry. Vol. 83 (second ed.). Wiley-Interscience. p. 16. ISBN 978-0-470-10629-7.
  13. Strehmel B, Strehmel V (January 2007). "Two-photon physical, organic, and polymer chemistry: theory, techniques, chromophore design, and applications.". Advances in Photochemistry. Vol. 29. John Wiley and Sons. pp. 111–354 (116). doi:10.1002/047003758X.ch3. ISBN 978-0-471-68240-0.
  14. Breit G (April 1967). "Virtual Coulomb excitation in nucleon transfer". Proceedings of the National Academy of Sciences of the United States of America. 57 (4): 849–55. Bibcode:1967PNAS...57..849B. doi:10.1073/pnas.57.4.849. PMC 224623. PMID 16591541.
Category:
Virtual state Add topic