The NUMBER PI
There are many forms of PI and you can see them
However the number of Pi is not just a circle but a series of geometric images such as an equilateral triangle, square, pentagon, etc.
unique pattern that I found 2004. Pi for all numbers is:
π
n
=
n
2
.
s
i
n
(
360
n
)
{\displaystyle \pi _{n}={\frac {n}{2}}.sin({\frac {360}{n}})}
sinus in degrees
n= {3,4,5,6........., infinity}
n=3 it is the equilateral triangle
π
3
=
3
2
sin
(
360
3
)
{\displaystyle \pi _{3}={\frac {3}{2}}\sin({\frac {360}{3}})}
π
3
=
1.299038105676657970145584756129404275207103940357785471041855234588949762681600027810859640067936431756719606061555027272477458821249214359108741634070780236396069923926729186550981115075813506192448761484257450177492164988004191001691378478420285348745275896191014287489903034894542100737760629932038067463761097204575710701640392743812359372142969874748342368381216535847874688010418122988440891548250968547863765249583132380335670783737076566229143676252517640533358216521993217274347815376373554674619972363212265589806452991554023153186737988373546994737255879027157790435027172484077780448014436830076173399466281730856066512557064076779745703123294923844606990748216673347110878468792671641139677682025389606048286479258495794767292154648948115366998523815015896613116458830885964900880276393737512516970811610634553457857999822195125972183078771421332595361479060232409486838841413231534260410498721433971667217832916432192792394148303696921223601631524640287512203987208937787304127.......
{\displaystyle \pi _{3}=1.299038105676657970145584756129404275207103940357785471041855234588949762681600027810859640067936431756719606061555027272477458821249214359108741634070780236396069923926729186550981115075813506192448761484257450177492164988004191001691378478420285348745275896191014287489903034894542100737760629932038067463761097204575710701640392743812359372142969874748342368381216535847874688010418122988440891548250968547863765249583132380335670783737076566229143676252517640533358216521993217274347815376373554674619972363212265589806452991554023153186737988373546994737255879027157790435027172484077780448014436830076173399466281730856066512557064076779745703123294923844606990748216673347110878468792671641139677682025389606048286479258495794767292154648948115366998523815015896613116458830885964900880276393737512516970811610634553457857999822195125972183078771421332595361479060232409486838841413231534260410498721433971667217832916432192792394148303696921223601631524640287512203987208937787304127.......}
Area of an equilateral triangle will be
R
2
π
3
{\displaystyle R^{2}\pi _{3}}
R -radius of the circle described about an equilateral triangle
The scope of the triangle will be
C
=
2
R
π
3
cos
α
2
:
α
=
360
3
{\displaystyle C={\frac {2R\pi _{3}}{\cos {\frac {\alpha }{2}}}}:\alpha ={\frac {360}{3}}}
See picture
n=4 it is a square
π
4
=
2
{\displaystyle \pi _{4}=2}
Area of squares will be
R
2
π
4
{\displaystyle R^{2}\pi _{4}}
R -radius of the circle described around the square
Perimeter of the square will be
C
=
2
R
π
4
cos
α
2
:
α
=
360
4
{\displaystyle C={\frac {2R\pi _{4}}{\cos {\frac {\alpha }{2}}}}:\alpha ={\frac {360}{4}}}
See picture
so on pentagon, hexagon .......
π
5
=
2.37764129073788393029109833344845535851424658531437555611826411107538292521298375429698202742702845418974929387850751052246766548442424981578803067578295594696444359492600258179554275230250379513151001423802924795917183008219605036301495148507880140322781045987090044531881885084349467130129921084258543849815492459549445122232219143670592470372285079329288667825627445956811065730153458201304781755172126659167760259062780734991737248477967564240583159502841310815397363785669533897013826055892072659996199853464482719029151537061472938008846993548889178745205678459542206169347872570742004980802724766701370391337077603044283323962631433827549038847681729685293628396669902392009519093871640782190843048473742646406880592139994355352920382189607783603508041226848456648980006775286567800517085352418736253370309354164490169821718538097751802464867296154739841155499816959251406543633373361369339814369337895730123108013172623915093695955211484250762466097770012856809360256952109203831071625
{\displaystyle \pi _{5}=2.37764129073788393029109833344845535851424658531437555611826411107538292521298375429698202742702845418974929387850751052246766548442424981578803067578295594696444359492600258179554275230250379513151001423802924795917183008219605036301495148507880140322781045987090044531881885084349467130129921084258543849815492459549445122232219143670592470372285079329288667825627445956811065730153458201304781755172126659167760259062780734991737248477967564240583159502841310815397363785669533897013826055892072659996199853464482719029151537061472938008846993548889178745205678459542206169347872570742004980802724766701370391337077603044283323962631433827549038847681729685293628396669902392009519093871640782190843048473742646406880592139994355352920382189607783603508041226848456648980006775286567800517085352418736253370309354164490169821718538097751802464867296154739841155499816959251406543633373361369339814369337895730123108013172623915093695955211484250762466097770012856809360256952109203831071625}
See picture
π
6
=
2.59807621135331594029116951225880855041420788071557094208371046917789952536320005562171928013587286351343921212311005454495491764249842871821748326814156047279213984785345837310196223015162701238489752296851490035498432997600838200338275695684057069749055179238202857497980606978908420147552125986407613492752219440915142140328078548762471874428593974949668473676243307169574937602083624597688178309650193709572753049916626476067134156747415313245828735250503528106671643304398643454869563075274710934923994472642453117961290598310804630637347597674709398947451175805431558087005434496815556089602887366015234679893256346171213302511412815355949140624658984768921398149643334669422175693758534328227935536405077921209657295851699158953458430929789623073399704763003179322623291766177192980176055278747502503394162322126910691571599964439025194436615754284266519072295812046481897367768282646306852082099744286794333443566583286438558478829660739384244720326304928057502440797441787557460825459
{\displaystyle \pi _{6}=2.59807621135331594029116951225880855041420788071557094208371046917789952536320005562171928013587286351343921212311005454495491764249842871821748326814156047279213984785345837310196223015162701238489752296851490035498432997600838200338275695684057069749055179238202857497980606978908420147552125986407613492752219440915142140328078548762471874428593974949668473676243307169574937602083624597688178309650193709572753049916626476067134156747415313245828735250503528106671643304398643454869563075274710934923994472642453117961290598310804630637347597674709398947451175805431558087005434496815556089602887366015234679893256346171213302511412815355949140624658984768921398149643334669422175693758534328227935536405077921209657295851699158953458430929789623073399704763003179322623291766177192980176055278747502503394162322126910691571599964439025194436615754284266519072295812046481897367768282646306852082099744286794333443566583286438558478829660739384244720326304928057502440797441787557460825459}
π
7
=
.
.
.
.
.
.
.
.
.
.
.
{\displaystyle \pi _{7}=...........}
π
8
=
.
.
.
.
.
.
.
.
.
.
.
{\displaystyle \pi _{8}=...........}
.
.
.
.
.
.
.
.
.
.
.
{\displaystyle ...........}
π
1
2
=
3
{\displaystyle \pi _{1}2=3}
.
.
.
.
.
.
.
.
.
.
.
{\displaystyle ...........}
π
=
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590922
{\displaystyle \pi =3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590922}
evidence
π
=
n
2
.
s
i
n
(
360
n
)
{\displaystyle \pi ={\frac {n}{2}}.sin({\frac {360}{n}})}
l
i
m
n
→
∞
n
2
.
s
i
n
(
360
n
)
{\displaystyle lim_{n\to \infty }{\frac {n}{2}}.sin({\frac {360}{n}})}
1
2
l
i
m
n
→
∞
n
.
s
i
n
(
360
n
)
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }n.sin({\frac {360}{n}})}
1
2
l
i
m
n
→
∞
s
i
n
(
360
n
)
1
n
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {360}{n}})}{\frac {1}{n}}}}
1
2
l
i
m
n
→
∞
s
i
n
(
360
n
)
1
n
.
360
360
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {360}{n}})}{\frac {1}{n}}}.{\frac {360}{360}}}
360
2
l
i
m
n
→
∞
s
i
n
(
360
n
)
360
n
{\displaystyle {\frac {360}{2}}lim_{n\to \infty }{\frac {sin({\frac {360}{n}})}{\frac {360}{n}}}}
360
n
=
t
{\displaystyle {\frac {360}{n}}=t}
t
→
0
{\displaystyle t\rightarrow \ 0}
180
lim
t
→
0
s
i
n
t
t
=
180
0
{\displaystyle 180\lim _{t\to \mathbf {0} }{\frac {sint}{t}}=180^{0}}
180
0
=
π
(
r
a
d
)
{\displaystyle 180^{0}=\pi (rad)}
-------------------------------------------------------
The following is another new form of PI, which I found in 2004
π
=
180.
m
.
s
i
n
(
1
m
)
{\displaystyle \pi =180.m.sin({\frac {1}{m}})}
lim
m
→
∞
180.
m
.
s
i
n
(
1
m
)
{\displaystyle \lim _{m\to \infty }180.m.sin({\frac {1}{m}})}
180
lim
m
→
∞
m
.
s
i
n
(
1
m
)
{\displaystyle 180\lim _{m\to \infty }m.sin({\frac {1}{m}})}
180
lim
m
→
∞
s
i
n
(
1
m
)
1
m
{\displaystyle 180\lim _{m\to \infty }{\frac {sin({\frac {1}{m}})}{\frac {1}{m}}}}
1
m
=
t
{\displaystyle {\frac {1}{m}}=t}
m
→
∞
{\displaystyle m\to \infty }
t
→
0
{\displaystyle t\rightarrow \ 0}
180
lim
t
→
0
s
i
n
t
t
=
180
0
{\displaystyle 180\lim _{t\to \mathbf {0} }{\frac {sint}{t}}=180^{0}}
180
0
=
π
(
r
a
d
)
{\displaystyle 180^{0}=\pi (rad)}
-------------------------------------------------------
π
2
{\displaystyle {\frac {\pi }{2}}}
π
2
=
n
2
s
i
n
(
180
n
)
{\displaystyle {\frac {\pi }{2}}={\frac {n}{2}}sin({\frac {180}{n}})}
evidence
l
i
m
n
→
∞
n
2
.
s
i
n
(
180
n
)
{\displaystyle lim_{n\to \infty }{\frac {n}{2}}.sin({\frac {180}{n}})}
1
2
l
i
m
n
→
∞
n
.
s
i
n
(
180
n
)
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }n.sin({\frac {180}{n}})}
1
2
l
i
m
n
→
∞
s
i
n
(
180
n
)
1
n
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {180}{n}})}{\frac {1}{n}}}}
1
2
l
i
m
n
→
∞
s
i
n
(
180
n
)
1
n
.
180
180
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {180}{n}})}{\frac {1}{n}}}.{\frac {180}{180}}}
90
lim
m
→
∞
s
i
n
(
1
m
)
1
m
{\displaystyle 90\lim _{m\to \infty }{\frac {sin({\frac {1}{m}})}{\frac {1}{m}}}}
180
n
=
t
{\displaystyle {\frac {180}{n}}=t}
n
→
∞
{\displaystyle n\to \infty }
t
→
0
{\displaystyle t\rightarrow \ 0}
90
lim
t
→
0
s
i
n
t
t
=
90
0
{\displaystyle 90\lim _{t\to \mathbf {0} }{\frac {sint}{t}}=90^{0}}
90
0
=
π
2
(
r
a
d
)
{\displaystyle 90^{0}={\frac {\pi }{2}}(rad)}
-------------------------------------------------------
π
3
{\displaystyle {\frac {\pi }{3}}}
π
3
=
n
2
s
i
n
(
120
n
)
{\displaystyle {\frac {\pi }{3}}={\frac {n}{2}}sin({\frac {120}{n}})}
evidence
l
i
m
n
→
∞
n
2
.
s
i
n
(
120
n
)
{\displaystyle lim_{n\to \infty }{\frac {n}{2}}.sin({\frac {120}{n}})}
1
2
l
i
m
n
→
∞
n
.
s
i
n
(
120
n
)
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }n.sin({\frac {120}{n}})}
1
2
l
i
m
n
→
∞
s
i
n
(
120
n
)
1
n
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {120}{n}})}{\frac {1}{n}}}}
1
2
l
i
m
n
→
∞
s
i
n
(
120
n
)
1
n
.
120
120
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {120}{n}})}{\frac {1}{n}}}.{\frac {120}{120}}}
60
lim
n
→
∞
s
i
n
(
120
n
)
120
n
{\displaystyle 60\lim _{n\to \infty }{\frac {sin({\frac {120}{n}})}{\frac {120}{n}}}}
120
n
=
t
{\displaystyle {\frac {120}{n}}=t}
n
→
∞
{\displaystyle n\to \infty }
t
→
0
{\displaystyle t\rightarrow \ 0}
60
lim
t
→
0
s
i
n
t
t
=
60
0
{\displaystyle 60\lim _{t\to \mathbf {0} }{\frac {sint}{t}}=60^{0}}
60
0
=
π
3
(
r
a
d
)
{\displaystyle 60^{0}={\frac {\pi }{3}}(rad)}
-------------------------------------------------------
π
4
{\displaystyle {\frac {\pi }{4}}}
π
4
=
n
2
.
s
i
n
(
90
n
)
{\displaystyle {\frac {\pi }{4}}={\frac {n}{2}}.sin({\frac {90}{n}})}
evidence
l
i
m
n
→
∞
n
2
.
s
i
n
(
90
n
)
{\displaystyle lim_{n\to \infty }{\frac {n}{2}}.sin({\frac {90}{n}})}
1
2
l
i
m
n
→
∞
n
.
s
i
n
(
90
n
)
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }n.sin({\frac {90}{n}})}
1
2
l
i
m
n
→
∞
s
i
n
(
90
n
)
1
n
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {90}{n}})}{\frac {1}{n}}}}
1
2
l
i
m
n
→
∞
s
i
n
(
90
n
)
1
n
.
90
90
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {90}{n}})}{\frac {1}{n}}}.{\frac {90}{90}}}
90
2
l
i
m
n
→
∞
s
i
n
(
90
n
)
90
n
{\displaystyle {\frac {90}{2}}lim_{n\to \infty }{\frac {sin({\frac {90}{n}})}{\frac {90}{n}}}}
90
n
=
t
{\displaystyle {\frac {90}{n}}=t}
n
→
∞
{\displaystyle n\to \infty }
t
→
0
{\displaystyle t\rightarrow \ 0}
45
lim
t
→
0
s
i
n
t
t
=
45
0
{\displaystyle 45\lim _{t\to \mathbf {0} }{\frac {sint}{t}}=45^{0}}
45
0
=
π
4
(
r
a
d
)
{\displaystyle 45^{0}={\frac {\pi }{4}}(rad)}
-------------------------------------------------------
π
5
{\displaystyle {\frac {\pi }{5}}}
π
5
=
n
2
s
i
n
(
72
n
)
{\displaystyle {\frac {\pi }{5}}={\frac {n}{2}}sin({\frac {72}{n}})}
evidence
l
i
m
n
→
∞
n
2
.
s
i
n
(
72
n
)
{\displaystyle lim_{n\to \infty }{\frac {n}{2}}.sin({\frac {72}{n}})}
1
2
l
i
m
n
→
∞
n
.
s
i
n
(
72
n
)
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }n.sin({\frac {72}{n}})}
1
2
l
i
m
n
→
∞
s
i
n
(
72
n
)
1
n
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {72}{n}})}{\frac {1}{n}}}}
1
2
l
i
m
n
→
∞
s
i
n
(
72
n
)
1
n
.
72
72
{\displaystyle {\frac {1}{2}}lim_{n\to \infty }{\frac {sin({\frac {72}{n}})}{\frac {1}{n}}}.{\frac {72}{72}}}
72
2
l
i
m
n
→
∞
s
i
n
(
72
n
)
72
n
{\displaystyle {\frac {72}{2}}lim_{n\to \infty }{\frac {sin({\frac {72}{n}})}{\frac {72}{n}}}}
72
n
=
t
{\displaystyle {\frac {72}{n}}=t}
n
→
∞
{\displaystyle n\to \infty }
t
→
0
{\displaystyle t\rightarrow \ 0}
72
2
l
i
m
t
→
0
s
i
n
t
t
=
72
2
{\displaystyle {\frac {72}{2}}lim_{t\to \mathbf {0} }{\frac {sint}{t}}={\frac {72}{2}}}
72
2
=
π
5
(
r
a
d
)
{\displaystyle {\frac {72}{2}}={\frac {\pi }{5}}(rad)}
-------------------------------------------------------
π
8
{\displaystyle {\frac {\pi }{8}}}
π
8
=
n
2
s
i
n
(
45
n
)
{\displaystyle {\frac {\pi }{8}}={\frac {n}{2}}sin({\frac {45}{n}})}
-------------------------------------------------------
The following is another new form of PI, which I found in 2004
π
=
n
.
sin
(
180
n
)
{\displaystyle \pi =n.\sin({\frac {180}{n}})}
evidence
l
i
m
n
→
∞
n
.
s
i
n
(
180
n
)
{\displaystyle \ lim_{n\to \infty }n.sin({\frac {180}{n}})}
l
i
m
n
→
∞
s
i
n
(
180
n
)
1
n
{\displaystyle \ lim_{n\to \infty }{\frac {sin({\frac {180}{n}})}{\frac {1}{n}}}}
l
i
m
n
→
∞
s
i
n
(
180
n
)
1
n
.
180
180
{\displaystyle \ lim_{n\to \infty }{\frac {sin({\frac {180}{n}})}{\frac {1}{n}}}.{\frac {180}{180}}}
180
lim
m
→
∞
s
i
n
(
180
n
)
180
n
{\displaystyle 180\lim _{m\to \infty }{\frac {sin({\frac {180}{n}})}{\frac {180}{n}}}}
180
n
=
t
{\displaystyle {\frac {180}{n}}=t}
n
→
∞
{\displaystyle n\to \infty }
t
→
0
{\displaystyle t\rightarrow \ 0}
180
lim
t
→
0
s
i
n
t
t
=
180
0
{\displaystyle 180\lim _{t\to \mathbf {0} }{\frac {sint}{t}}=180^{0}}
180
0
=
π
(
r
a
d
)
{\displaystyle 180^{0}=\pi (rad)}
-------------------------------------------------------
π
2
{\displaystyle {\frac {\pi }{2}}}
π
2
=
n
.
sin
(
90
n
)
{\displaystyle {\frac {\pi }{2}}=n.\sin({\frac {90}{n}})}
-------------------------------------------------------
π
3
{\displaystyle {\frac {\pi }{3}}}
π
3
=
n
.
sin
(
60
n
)
{\displaystyle {\frac {\pi }{3}}=n.\sin({\frac {60}{n}})}
-------------------------------------------------------
π
5
{\displaystyle {\frac {\pi }{5}}}
π
5
=
n
.
sin
(
36
n
)
{\displaystyle {\frac {\pi }{5}}=n.\sin({\frac {36}{n}})}
-------------------------------------------------------
The following is another new form of PI, which I found in 2004
π
=
360.
m
.
s
i
n
(
1
2
m
)
{\displaystyle \pi =360.m.sin({\frac {1}{2m}})}
lim
m
→
∞
360.
m
.
s
i
n
(
1
2
m
)
{\displaystyle \lim _{m\to \infty }360.m.sin({\frac {1}{2m}})}
360
lim
m
→
∞
m
.
s
i
n
(
1
2
m
)
{\displaystyle 360\lim _{m\to \infty }m.sin({\frac {1}{2m}})}
360
lim
m
→
∞
s
i
n
(
1
2
m
)
1
m
{\displaystyle 360\lim _{m\to \infty }{\frac {sin({\frac {1}{2m}})}{\frac {1}{m}}}}
360
lim
m
→
∞
s
i
n
(
1
2
m
)
1
m
1
2
1
2
{\displaystyle 360\lim _{m\to \infty }{\frac {sin({\frac {1}{2m}})}{\frac {1}{m}}}{\frac {\frac {1}{2}}{\frac {1}{2}}}}
360.
1
2
lim
m
→
∞
s
i
n
(
1
2
m
)
1
2
m
{\displaystyle 360.{\frac {1}{2}}\lim _{m\to \infty }{\frac {sin({\frac {1}{2m}})}{\frac {1}{2m}}}}
1
2
m
=
t
{\displaystyle {\frac {1}{2m}}=t}
m
→
∞
{\displaystyle m\to \infty }
t
→
0
{\displaystyle t\rightarrow \ 0}
180
lim
t
→
0
s
i
n
t
t
=
180
0
{\displaystyle 180\lim _{t\to \mathbf {0} }{\frac {sint}{t}}=180^{0}}
180
0
=
π
(
r
a
d
)
{\displaystyle 180^{0}=\pi (rad)}
For the numerical values of PI recommend free extra precision calculator Harry-J-Smith XP,XM,….. recommend m=1.0E+10000000
to the success of the calculator you need to install netframework2.0
(Рајко Велимировић (talk ) 10:02, 21 December 2011 (UTC))
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑