Misplaced Pages

3-torus

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Three-torus) Cartesian product of 3 circles This article is about the three-dimensional space. For the two-dimensional surface with three holes, see triple torus.
A view from inside a 3-torus. All of the cubes in the image are the same cube, since light in the manifold wraps around into closed loops.

The three-dimensional torus, or 3-torus, is defined as any topological space that is homeomorphic to the Cartesian product of three circles, T 3 = S 1 × S 1 × S 1 . {\displaystyle \mathbb {T} ^{3}=S^{1}\times S^{1}\times S^{1}.} In contrast, the usual torus is the Cartesian product of only two circles.

The 3-torus is a three-dimensional compact manifold with no boundary. It can be obtained by "gluing" the three pairs of opposite faces of a cube, where being "glued" can be intuitively understood to mean that when a particle moving in the interior of the cube reaches a point on a face, it goes through it and appears to come forth from the corresponding point on the opposite face, producing periodic boundary conditions. Gluing only one pair of opposite faces produces a solid torus while gluing two of these pairs produces the solid space between two nested tori.

In 1984, Alexei Starobinsky and Yakov Zeldovich at the Landau Institute in Moscow proposed a cosmological model where the shape of the universe is a 3-torus.

References

  1. Overbeye, Dennis. New York Times 11 March 2003: Web. 16 January 2011. “Universe as Doughnut: New Data, New Debate”

Sources

Manifolds (Glossary, List, Category)
Basic concepts
Main results (list)
Maps
Types of
manifolds
Tensors
Vectors
Covectors
Bundles
Connections
Related
Generalizations
Stub icon

This topology-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
3-torus Add topic