Misplaced Pages

Tellurium ion resistance

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Family of transport proteins

The Tellurium Ion Resistance (TerC) Family (TC# 2.A.109) is part of the Lysine Exporter (LysE) Superfamily. A representative list of proteins belonging to the TerC family can be found in the Transporter Classification Database.

TerC

The TerC family (Pfam 03741) includes the E. coli TerC protein (TC# 2.A.109.1.1) which has been implicated in tellurium resistance. It is hypothesized to catalyze efflux of tellurium ions. TerC is encoded by plasmid pTE53 from a clinical isolate of E. coli. It has 346 amino acyl residues (aas) and 9 putative transmembrane segments (TMSs) with a large hydrophilic loop between TMSs 5 and 6.

A homologue in Arabidopsis thaliana (TC# 9.A.30.2.1) may function in prothylakoid membrane biogenises during early chloroplast development. It has 384 aas and 7-8 putative TMSs. In E. coli, TerC forms a membrane complex with TerB as well as DctA, PspA, HslU, and RplK. The TerB/TerC complex may link different functional modules with biochemical activities of C4-dicarboxylate transport, inner membrane stress response (phage shock protein regulatory complex), ATPase/chaperone activity, and proteosynthesis. It may be part of a metal sensing stress response system. The co-presence of TerC and TerE but not TerF correlates with tellurite resistance when several hundred bacterial strains were assayed.

Function

The reaction proposed to be catalyzed by TerC is:

tellurium ions (in) → tellurium ions (out).

See also

Further reading

References

  1. "2.A.109 The Tellurium Ion Resistance (TerC) Family". Transporter Classification Database. Retrieved 2016-02-26.
  2. ^ Burian, J.; Tu, N.; Kl'ucár, L.; Guller, L.; Lloyd-Jones, G.; Stuchlík, S.; Fejdi, P.; Siekel, P.; Turna, J. (1998-01-01). "In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli". Folia Microbiologica. 43 (6): 589–599. doi:10.1007/bf02816374. ISSN 0015-5632. PMID 10069007. S2CID 44237747.
  3. Kormutakova, R.; Klucar, L.; Turna, J. (2000-06-01). "DNA sequence analysis of the tellurite-resistance determinant from clinical strain of Escherichia coli and identification of essential genes". BioMetals. 13 (2): 135–139. doi:10.1023/A:1009272122989. ISSN 0966-0844. PMID 11016400. S2CID 22672098.
  4. Kwon, Kwang-Chul; Cho, Myeon Haeng (2008-08-01). "Deletion of the chloroplast-localized AtTerC gene product in Arabidopsis thaliana leads to loss of the thylakoid membrane and to seedling lethality". The Plant Journal. 55 (3): 428–442. doi:10.1111/j.1365-313X.2008.03523.x. ISSN 1365-313X. PMID 18429937.
  5. Turkovicova, L.; Smidak, R.; Jung, G.; Turna, J.; Lubec, G.; Aradska, J. (2016-01-09). "Proteomic analysis of the TerC interactome: Novel links to tellurite resistance and pathogenicity". Journal of Proteomics. 136: 167–73. doi:10.1016/j.jprot.2016.01.003. ISSN 1876-7737. PMID 26778143.
  6. Anantharaman, Vivek; Iyer, Lakshminarayan M.; Aravind, L. (2012-10-30). "Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing". Molecular BioSystems. 8 (12): 3142–3165. doi:10.1039/c2mb25239b. ISSN 1742-2051. PMC 4104200. PMID 23044854.
  7. Orth, Dorothea; Grif, Katharina; Dierich, Manfred P.; Würzner, Reinhard (2007-03-01). "Variability in tellurite resistance and the ter gene cluster among Shiga toxin-producing Escherichia coli isolated from humans, animals and food". Research in Microbiology. 158 (2): 105–111. doi:10.1016/j.resmic.2006.10.007. ISSN 0923-2508. PMID 17317110.
Portal:


Stub icon

This membrane protein–related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Tellurium ion resistance Add topic