Misplaced Pages

Tautological consequence

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Concept in propositional logic

In propositional logic, tautological consequence is a strict form of logical consequence in which the tautologousness of a proposition is preserved from one line of a proof to the next. Not all logical consequences are tautological consequences. A proposition Q {\displaystyle Q} is said to be a tautological consequence of one or more other propositions ( P 1 {\displaystyle P_{1}} , P 2 {\displaystyle P_{2}} , ..., P n {\displaystyle P_{n}} ) in a proof with respect to some logical system if one is validly able to introduce the proposition onto a line of the proof within the rules of the system; and in all cases when each of ( P 1 {\displaystyle P_{1}} , P 2 {\displaystyle P_{2}} , ..., P n {\displaystyle P_{n}} ) are true, the proposition Q {\displaystyle Q} also is true.

Another way to express this preservation of tautologousness is by using truth tables. A proposition Q {\displaystyle Q} is said to be a tautological consequence of one or more other propositions ( P 1 {\displaystyle P_{1}} , P 2 {\displaystyle P_{2}} , ..., P n {\displaystyle P_{n}} ) if and only if in every row of a joint truth table that assigns "T" to all propositions ( P 1 {\displaystyle P_{1}} , P 2 {\displaystyle P_{2}} , ..., P n {\displaystyle P_{n}} ) the truth table also assigns "T" to Q {\displaystyle Q} .

Example

a = "Socrates is a man." b = "All men are mortal." c = "Socrates is mortal."

a
b
c {\displaystyle {\therefore c}}

The conclusion of this argument is a logical consequence of the premises because it is impossible for all the premises to be true while the conclusion false.

Joint Truth Table for ab and c
a b c ab c
T T T T T
T T F T F
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

Reviewing the truth table, it turns out the conclusion of the argument is not a tautological consequence of the premise. Not every row that assigns T to the premise also assigns T to the conclusion. In particular, it is the second row that assigns T to ab, but does not assign T to c.

Denotation and properties

Tautological consequence can also be defined as P 1 {\displaystyle P_{1}} P 2 {\displaystyle P_{2}} ∧ ... ∧ P n {\displaystyle P_{n}} Q {\displaystyle Q} is a substitution instance of a tautology, with the same effect.

It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied. Similarly, if p is a tautology then p is tautologically implied by every proposition.

See also

Notes

  1. Barwise and Etchemendy 1999, p. 110
  2. Robert L. Causey (2006). Logic, Sets, and Recursion. Jones & Bartlett Learning. pp. 51–52. ISBN 978-0-7637-3784-9. OCLC 62093042.

References

Category:
Tautological consequence Add topic