Misplaced Pages

Strachey method for magic squares

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Strachey method for magic squares" – news · newspapers · books · scholar · JSTOR (September 2024)

The Strachey method for magic squares is an algorithm for generating magic squares of singly even order 4k + 2. An example of magic square of order 6 constructed with the Strachey method:

Example
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11

Strachey's method of construction of singly even magic square of order n = 4k + 2.

1. Divide the grid into 4 quarters each having n/4 cells and name them crosswise thus

A C
D B

2. Using the Siamese method (De la Loubère method) complete the individual magic squares of odd order 2k + 1 in subsquares A, B, C, D, first filling up the sub-square A with the numbers 1 to n/4, then the sub-square B with the numbers n/4 + 1 to 2n/4,then the sub-square C with the numbers 2n/4 + 1 to 3n/4, then the sub-square D with the numbers 3n/4 + 1 to n. As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.

17 24 1 8 15 67 74 51 58 65
23 5 7 14 16 73 55 57 64 66
4 6 13 20 22 54 56 63 70 72
10 12 19 21 3 60 62 69 71 53
11 18 25 2 9 61 68 75 52 59
92 99 76 83 90 42 49 26 33 40
98 80 82 89 91 48 30 32 39 41
79 81 88 95 97 29 31 38 45 47
85 87 94 96 78 35 37 44 46 28
86 93 100 77 84 36 43 50 27 34

3. Exchange the leftmost k columns in sub-square A with the corresponding columns of sub-square D.

92 99 1 8 15 67 74 51 58 65
98 80 7 14 16 73 55 57 64 66
79 81 13 20 22 54 56 63 70 72
85 87 19 21 3 60 62 69 71 53
86 93 25 2 9 61 68 75 52 59
17 24 76 83 90 42 49 26 33 40
23 5 82 89 91 48 30 32 39 41
4 6 88 95 97 29 31 38 45 47
10 12 94 96 78 35 37 44 46 28
11 18 100 77 84 36 43 50 27 34

4. Exchange the rightmost k - 1 columns in sub-square C with the corresponding columns of sub-square B.

92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
79 81 13 20 22 54 56 63 70 47
85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34
17 24 76 83 90 42 49 26 33 65
23 5 82 89 91 48 30 32 39 66
4 6 88 95 97 29 31 38 45 72
10 12 94 96 78 35 37 44 46 53
11 18 100 77 84 36 43 50 27 59

5. Exchange the middle cell of the leftmost column of sub-square A with the corresponding cell of sub-square D. Exchange the central cell in sub-square A with the corresponding cell of sub-square D.

92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47
85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34
17 24 76 83 90 42 49 26 33 65
23 5 82 89 91 48 30 32 39 66
79 6 13 95 97 29 31 38 45 72
10 12 94 96 78 35 37 44 46 53
11 18 100 77 84 36 43 50 27 59

The result is a magic square of order n=4k + 2.

References

  1. W W Rouse Ball Mathematical Recreations and Essays, (1911)

See also

Category:
Strachey method for magic squares Add topic