Misplaced Pages

Solar radiation modification

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Solar Radiation Management) Large-scale methods to reflect sunlight and cool Earth

refer to caption and image description
Schematic with five proposed methods for solar radiation modification technologies

Solar radiation modification (SRM) (or solar radiation management or solar geoengineering), is a group of large-scale approaches to limit global warming by increasing the amount of sunlight (solar radiation) that is reflected away from Earth and back to space. Among the potential approaches, stratospheric aerosol injection (SAI) is the most-studied, followed by marine cloud brightening (MCB); others such as ground- and space-based show less potential or feasibility and receive less attention. SRM could be a supplement to climate change mitigation and adaptation measures, but would not be a substitute for reducing greenhouse gas emissions. SRM is a form of climate engineering or geoengineering.

Scientific studies, based on evidence from climate models, have consistently shown that some forms of SRM could reduce global warming and many effects of climate change. However, because warming from greenhouse gases and cooling from SRM would operate differently across latitudes and seasons, a world where global warming would be offset by SRM would have a different climate from one where this warming did not occur in the first place. SRM would therefore pose environmental risks, as would a warmed world without SRM. Confidence in the current projections of how SRM would affect regional climate and ecosystems is low. Furthermore, a suboptimal implementation of SRM--such as starting or stopping suddenly, or intervening too strongly in the Earth's energy balance--would increase environmental risks.

SRM presents political, social and ethical challenges. A common concern is that attention to it would lessen efforts to reduce greenhouse gas emissions. Because some SRM approaches appear to be technically feasible and have relatively low direct financial costs, some countries could be capable of deploying it on their own, raising questions of international relations. Although some existing applicable governance instruments and institutions are applicable, there is currently no formal international framework designed to regulate SRM. Issues of governance and effectiveness are intertwined, as poorly governed use of SRM might lead to its suboptimal implementation. For these reasons and more, SRM is often a contested topic among environmentalists.

In the face of ongoing global warming and insufficient reductions to greenhouse gas emissions, SRM receives increasing attention. Climate scientists and other experts from around the world research and publish academic articles, while more nongovernmental and intergovernmental organizations, as well as national governments, are examining and developing views.

Context

See also: Causes of climate change, Global surface temperature, and Greenhouse effect
Potential complementary responses to climate change: greenhouse gas emissions abatement, carbon dioxide removal, SRM, and adaptation.

The context for the interest in solar radiation modification (SRM) options is continued high global emissions of greenhouse gases, rising global temperatures, and worsening climate impacts. Human's greenhouse gas emissions have disrupted the Earth's energy budget. Due to elevated atmospheric greenhouse gas concentrations, the net difference between the amount of sunlight absorbed by the Earth and the amount of energy radiated back to space has risen from 1.7 W/m in 1980, to 3.1 W/m in 2019. This imbalance, or "radiative forcing," means that the Earth absorbs more energy than it emits, causing global temperatures to rise which will, in turn, have negative impacts on humans and nature.

In principle, net emissions could be reduced and even eliminated achieved through a combination of emission cuts and carbon dioxide removal (together called "mitigation"). However, emissions have persisted, consistently exceeding targets, and experts have raised serious questions regarding the feasibility of large-scale removals. The 2023 Emissions Gap Report from the UN Environment Programme estimated that even the most optimistic assumptions regarding countries' current conditional emissions policies and pledges has only a 14% chance of limiting global warming to 1.5 °C.

SRM would increase Earth's reflection of sunlight by increasing the albedo of the atmosphere or the surface. An increase in planetary albedo of 1% would reduce radiative forcing by 2.35 W/m, eliminating most of global warming from current anthropogenically elevated greenhouse gas concentrations, while a 2% albedo increase would negate the warming effect of doubling the atmospheric carbon dioxide concentration.

SRM could theoretically buy time by slowing the rate of climate change or to eliminate the worst climate impacts until net negative emissions reduce atmospheric greenhouse gas concentrations sufficiently. This is because SRM could, unlike the other responses, cool the planet within months after deployment.

SRM is generally intended to complement, not replace, emissions reduction and carbon dioxide removal. For example, the IPCC Sixth Assessment Report says: "There is high agreement in the literature that for addressing climate change risks SRM cannot be the main policy response to climate change and is, at best, a supplement to achieving sustained net zero or net negative CO2 emission levels globally".

Major reports on SRM that have investigated advantages and disadvantages of SRM (sometimes grouped with carbon dioxide removal and under the title of climate engineering) include those by the Royal Society (2009), the US National Academies (2015 and 2021), the UN Environment Programme (2023), and the European Union's Scientific Advice Mechanism (2024).

History

In 1965, during the administration of U.S. President Lyndon B. Johnson, the President's Science Advisory Committee delivered Restoring the Quality of Our Environment, the first report which warned of the harmful effects of carbon dioxide emissions from fossil fuel. To counteract global warming, the report mentioned "deliberately bringing about countervailing climatic changes", including "raising the albedo, or reflectivity, of the Earth".

In 1974, Russian climatologist Mikhail Budyko suggested that if global warming ever became a serious threat, it could be countered with airplane flights in the stratosphere, burning sulfur to make aerosols that would reflect sunlight away. Along with carbon dioxide removal, SRM was discussed jointly as geoengineering in a 1992 climate change report from the US National Academies.

David Keith, an American physicist, has worked on solar geoengineering since 1992, when he and Hadi Dowlatabadi published one of the first assessments of the technology and its policy implications, introducing a structured comparison of cost and risk. Keith has consistently argued that geoengineering needs a "systematic research program" to determine whether or not its approaches are feasible. He has also appealed for international standards of governance and oversight for how such research might proceed.

The first modeled results of SRM were published in 2000. In 2006 Nobel Laureate Paul Crutzen published an influential scholarly paper where he said, "Given the grossly disappointing international political response to the required greenhouse gas emissions, and further considering some drastic results of recent studies, research on the feasibility and environmental consequences of climate engineering should not be tabooed."

Atmospheric methods

The atmospheric methods for SRM include stratospheric aerosol injection (SAI), marine cloud brightening (MCB) and cirrus cloud thinning (CCT).

Stratospheric aerosol injection (SAI)

Pinatubo eruption cloud: This volcano released huge quantities of stratospheric sulfur aerosols, and this event contributed greatly to understanding of stratospheric aerosol injection (SAI)
Main article: Stratospheric aerosol injection

For stratospheric aerosol injection (SAI) small particles would be injected into the upper atmosphere to cool the planet with both global dimming and increased albedo. Of all the proposed SRM methods, SAI has received the most sustained attention: The IPCC concluded in 2018 that SAI "is the most-researched SRM method, with high agreement that it could limit warming to below 1.5 °C." This technique would mimic a cooling phenomenon that occurs naturally by the eruption of volcanoes. Sulfates are the most commonly proposed aerosol, since there is a natural analogue with (and evidence from) volcanic eruptions. Alternative materials such as using photophoretic particles, titanium dioxide, and diamond have been proposed. Delivery by custom aircraft appears most feasible, with artillery and balloons sometimes discussed.

This technique could give much more than 3.7 W/m of globally averaged negative forcing, which is sufficient to entirely offset the warming caused by a doubling of carbon dioxide.

The most recent Scientific Assessment of Ozone Depletion report in 2022 from the World Meteorological Organization concluded "Stratospheric Aerosol Injection (SAI) has the potential to limit the rise in global surface temperatures by increasing the concentrations of particles in the stratosphere... . However, SAI comes with significant risks and can cause unintended consequences."

A potential disadvantage of SAI is its potential to delay the regeneration of the stratospheric ozone layer (dependent on assumptions about which aerosols would be used to do the cooling).

Marine cloud brightening (MCB)

Main article: Marine cloud brightening

Marine cloud brightening (MCB) would involve spraying fine sea water to whiten clouds and thus increase cloud reflectivity. It would work by "seeding to promote nucleation, reducing optical thickness and cloud lifetime, to allow more outgoing longwave radiation to escape into space".

The extra condensation nuclei created by the spray would change the size distribution of the drops in existing clouds to make them whiter. The sprayers would use fleets of unmanned rotor ships known as Flettner vessels to spray mist created from seawater into the air to thicken clouds and thus reflect more radiation from the Earth. The whitening effect is created by using very small cloud condensation nuclei, which whiten the clouds due to the Twomey effect.

This technique can give more than 3.7 W/m of globally averaged negative forcing, which is sufficient to reverse the warming effect of a doubling of atmospheric carbon dioxide concentration.

Cirrus cloud thinning (CCT)

Main article: Cirrus cloud thinning
Cirrus clouds merging to cirrocumulus clouds

Cirrus cloud thinning (CCT) involves "seeding to promote nucleation, reducing optical thickness and cloud lifetime, to allow more outgoing longwave radiation to escape into space."Natural cirrus clouds are believed to have a net warming effect. These could be dispersed by the injection of various materials.

This method is strictly not SRM, as it increases outgoing longwave radiation instead of decreasing incoming shortwave radiation. However, because it shares some of the physical and especially governance characteristics as the other SRM methods, it is often included.

Other methods

Ground-based albedo modification

Main article: Reflective surfaces (climate engineering)

The IPCC describes ground-based albedo modification as "whitening roofs, changes in land use management (e.g., no-till farming), change of albedo at a larger scale (covering glaciers or deserts with reflective sheeting and changes in ocean albedo)." It is a method of enhancing Earth's albedo, i.e. the ability to reflect the visible, infrared, and ultraviolet wavelengths of the Sun, reducing heat transfer to the surface.

Space-based

Main article: Space mirror (climate engineering)
Znamya-2, which was deployed as part of a series of orbital space mirror experiments in the 1990s by Russia.

Space-based approaches could be advantageous compared to stratospheric aerosol injection because they do not interfere directly with the biosphere and ecosystems. However, space-based approaches would cost about 1000 times more than their terrestrial alternatives. In 2022, the IPCC Sixth Assessment Report discussed SAI, MCB, CCT and even attempts to alter albedo on the ground or in the ocean but did not address space-based approaches.

There has been a range of proposals to reflect or deflect solar radiation from space, before it even reaches the atmosphere, commonly described as a space sunshade. The most straightforward is to have mirrors orbiting around the Earth—an idea first suggested even before the wider awareness of climate change, with rocketry pioneer Hermann Oberth considering it a way to facilitate terraforming projects in 1923. and this was followed by other books in 1929, 1957 and 1978. By 1992, the U.S. National Academy of Sciences described a plan to suspend 55,000 mirrors with an individual area of 100 square meters in a Low Earth orbit. Another contemporary plan was to use space dust to replicate Rings of Saturn around the equator, although a large number of satellites would have been necessary to prevent it from dissipating. A 2006 variation on this idea suggested relying entirely on a ring of satellites electromagnetically tethered in the same location. In all cases, sunlight exerts pressure which can displace these reflectors from orbit over time, unless stabilized by enough mass. Yet, higher mass immediately drives up launch costs.

When summarizing these spaced-based options in 2009, the Royal Society concluded that their deployment times are measured in decades and costs in the trillions of USD, meaning that they are "not realistic potential contributors to short-term, temporary measures for avoiding dangerous climate change", and may only be competitive with the other geoengineering approaches when viewed from a genuinely long (a century or more) perspective, as the long lifetime of L1-based approaches could make them cheaper than the need to continually renew atmospheric-based measures over that timeframe.

Costs

Cost estimates for SAI

This section is an excerpt from Stratospheric aerosol injection § Cost.

A study in 2020 looked at the cost of SAI through to the year 2100. It found that relative to other climate interventions and solutions, SAI remains inexpensive. However, at about $18 billion per year per degree Celsius of warming avoided (in 2020 USD), a solar geoengineering program with substantial climate impact would lie well beyond the financial reach of individuals, small states, or other non-state potential rogue actors. The annual cost of delivering a sufficient amount of sulfur to counteract expected greenhouse warming is estimated at $5–10 billion US dollars.

SAI is expected to have low direct financial costs of implementation, relative to the expected costs of both unabated climate change and aggressive mitigation.

Technical problem areas

See also: Stratospheric aerosol injection § Problematic aspects

Aspects of regional scales and seasonal timescales

Modelling studies have consistently concluded that moderate SRM use would significantly reduce many of the impacts of global warming —for example, average and extreme temperature, water availability, and cyclone intensity Furthermore, SRM's effect would occur rapidly, unlike those of other responses to climate change. However, even under optimal implementation, some climatic anomalies—especially regarding precipitation—would persist, although mostly at lesser magnitudes than without SRM.

However, SRM has significant potential risks and uncertainties. The IPCC Sixth Assessment Report explains some of the risks and uncertainties as follows: " SRM could offset some of the effects of increasing GHGs on global and regional climate, including the carbon and water cycles. However, there would be substantial residual or overcompensating climate change at the regional scales and seasonal time scales, and large uncertainties associated with aerosol–cloud–radiation interactions persist. The cooling caused by SRM would increase the global land and ocean CO2 sinks, but this would not stop CO2 from increasing in the atmosphere or affect the resulting ocean acidification under continued anthropogenic emissions."

Likewise, a 2023 report from the UN Environment Programme stated, "Climate model results indicate that an operational SRM deployment could fully or partially offset the global mean warming caused by anthropogenic GHG emissions and reduce some climate change hazards in most regions. There could be substantial residual or possible overcompensating climate change at regional scales and seasonal timescales." The report also said: "An operational SRM deployment would introduce new risks to people and ecosystems".

SRM would imperfectly compensate for anthropogenic climate changes. Greenhouse gases warm throughout the globe and year, whereas SRM reflects light more effectively at low latitudes and in the hemispheric summer (due to the sunlight's angle of incidence) and only during daytime. Deployment regimes could compensate for this heterogeneity by changing and optimizing injection rates by latitude and season.

Impacts on precipitation

Models indicate that SRM would reverse warming-induced changes to precipitation more rapidly than changes to temperature. Therefore, using SRM to fully return global mean temperature to a preindustrial level would overcorrect for precipitation changes. This has led to claims that it would dry the planet or even cause drought, but this would depend on the intensity (i.e. radiative forcing) of SRM. Furthermore, soil moisture is more important for plants than average annual precipitation. Because SRM would reduce evaporation, it more precisely compensates for changes to soil moisture than for average annual precipitation. Likewise, the intensity of tropical monsoons is increased by climate change and decreased by SRM.

A net reduction in tropical monsoon intensity might manifest at moderate use of SRM, although to some degree the effect of this on humans and ecosystems would be mitigated by greater net precipitation outside of the monsoon system. This has led to misleading claims that SRM "would disrupt the Asian and African summer monsoons", something that has been repeatedly challenged by climate scientists who study SRM. Ultimately the impact would depend on the particular implementation regime.

Deployment length

A modeling study in 2023 showed that the range of possible deployment timescales is vast even if pathways start at a similar point at the beginning of SRM deployment. This is because the evolution of mitigation under SRM, the availability of carbon removal technologies and the effects of climate reversibility are not precisely known. Since these effects will be mostly uncertain at the time of SRM initialization, a precedent prediction of deployment length seems unlikely, with possibilities ranging from decades to multiple centuries. This is a knowledge gap that must be considered before any SRM proposal is seriously considered.

For all realizations that follow current NDC (nationally determined contributions) median 2100 warming projections (2.4 ∘C), none deploy SRM for a shorter period than 100 years.

The direct climatic effects of SRM are reversible within short timescales. Models project that SRM interventions would take effect rapidly, but would also quickly fade out if not sustained.

Termination shock

If SRM masked significant warming, stopped abruptly, and was not resumed within a year or so, the climate would rapidly warm towards levels which would have existed without the use of SRM, sometimes known as termination shock. The rapid rise in temperature might lead to more severe consequences than a gradual rise of the same magnitude. However, some scholars have argued that this risk might be manageable because it would be in states' interest to resume any terminated deployment, and maintaining back-up SRM infrastructure would increase the resilience of an SRM system.

Failure to reduce ocean acidification

Change in sea surface pH caused by anthropogenic CO2 between the 1700s and the 1990s. This ocean acidification will still be a major problem unless atmospheric CO2 is reduced, and subsurface acidification will persist even afterwards.

SRM does not directly influence atmospheric carbon dioxide concentration and thus does not reduce ocean acidification. While not a risk of SRM per se, this points to the limitations of relying on it to the exclusion of emissions reduction.

Effect on sky and clouds

Managing solar radiation using aerosols or cloud cover would involve changing the ratio between direct and indirect solar radiation. This would affect plant life and solar energy. Visible light, useful for photosynthesis, is reduced proportionally more than is the infrared portion of the solar spectrum due to the mechanism of Mie scattering. As a result, deployment of atmospheric SRM would affect the growth rates of phytoplankton, trees, and crops between now and the end of the century. Uniformly reduced net shortwave radiation would affect solar photovoltaics, but the real-world impact is complex and is affected by temperature and cloud fraction, and interacts with demand-side factors (especially heating and cooling load).

Uncertainty regarding effects

Much uncertainty remains about SRM's likely effects. Most of the evidence regarding SRM's expected effects comes from climate models and volcanic eruptions. Some uncertainties in climate models (such as aerosol microphysics, stratospheric dynamics, and sub-grid scale mixing) are particularly relevant to SRM and are a target for future research. Volcanoes are an imperfect analogue as they release the material in the stratosphere in a single pulse, as opposed to sustained injection.

Climate change has various effects on agriculture. One of them is the CO2 fertilization effect which affects different crops in different ways. A net increase in agricultural productivity from SRM (in combination with raised carbon dioxide levels) has been predicted by some studies due to the combination of more diffuse light and carbon dioxide's fertilization effect. Other studies suggest that SRM would have little net effect on agriculture.

There have also been proposals to focus SRM at the poles, in order to combat sea level rise or regional marine cloud brightening (MCB) in order to protect coral reefs from bleaching. However, there is low confidence about the ability to control geographical boundaries of the effect.

SRM might be used in ways that are not optimal. In particular, SRM's climatic effects would be rapid and reversible, which would bring the disadvantage of sudden warming if it were to be stopped suddenly. Similarly, if SRM was very heterogenous, then the climatic responses could be severe and uncertain.

Governance and policy risks

Global governance issues

The potential use of SRM poses several governance challenges because of its high leverage, low apparent direct costs, and technical feasibility as well as issues of power and jurisdiction. Because international law is generally consensual, this creates a challenge of widespread participation being required. Key issues include who will have control over the deployment of SRM and under what governance regime the deployment can be monitored and supervised. A governance framework for SRM must be sustainable enough to contain a multilateral commitment over a long period of time and yet be flexible as information is acquired, the techniques evolve, and interests change through time.

Some political scientists have argued that the current international political system is inadequate for the fair and inclusive governance of SRM deployment on a global scale. Other researchers have suggested that building a global agreement on SRM deployment would be very difficult, and speculated whether power blocs might emerge. However, there may be significant incentives for states to cooperate in choosing a specific SRM policy, which make unilateral deployment unlikely.

Other relevant aspects of the governance of SRM include supporting research, ensuring that it is conducted responsibly, regulating the roles of the private sector and (if any) the military, public engagement, setting and coordinating research priorities, undertaking trusted scientific assessment, building trust, and compensating for possible harms.

Although climate models of SRM generally simulate consistent implementation, leaders of countries and other actors may disagree as to whether, how, and to what degree SRM be used. This could result in suboptimal deployments and exacerbate international tensions. Likewise, blame for actual or perceived local negative impacts from SRM could be a source of international tensions.

There is a risk that countries may start using SRM without proper research and evaluation. SRM, at least by stratospheric aerosol injection, appears to have low direct implementation costs relative to its potential impact, and many countries have the financial and technical resources to undertake SRM. Some have suggested that SRM could be within reach of a lone "Greenfinger", a wealthy individual who takes it upon him or herself to be the "self-appointed protector of the planet". Others argue that states will insist on maintaining control of SRM.

Lessened climate change mitigation

See also: Climate change mitigation

A common concern is that the use of SRM, or even the idea, might reduce the political and social impetus for climate change mitigation. This has often been called a potential "moral hazard", although such language is not precise. However, some engagement work has suggested that SRM may in fact increase the likelihood of emissions reduction because the pursuit of such a risky approach underlines the seriousness of global warming.

Support for SRM research

Support for SRM research has come from scientists, NGOs, international organisations, and governments. The leading argument in support of SRM research is that there are large and immediate risks from climate change, and SRM is the only known way to quickly stop (or reverse) warming. Leading this effort have been some climate scientists (such as James Hansen), some of whom have endorsed one or both public letters that support further SRM research.

Scientific and other large organizations that have called for further research on SRM include:

Two sign-on letters in 2023 from scientists and other experts have called for expanded "responsible SRM research". One wants to "objectively evaluate the potential for SRM to reduce climate risks and impacts, to understand and minimize the risks of SRM approaches, and to identify the information required for governance". It was endorsed by "more than 110 physical and biological scientists studying climate and climate impacts about the role of physical sciences research." Another called for "balance in research and assessment of solar radiation modification" and was endorsed by about 150 experts, mostly scientists.

Some nongovernmental organizations actively support SRM research and governance dialogues. The Degrees Initiative is a UK registered charity, established to build capacity in developing countries to evaluate SRM. It works toward "changing the global environment in which SRM is evaluated, ensuring informed and confident representation from developing countries."

Operaatio Arktis is a Finnish youth climate organisation that supports research into solar radiation modification alongside mitigation and carbon sequestration as a potential means to preserve polar ice caps and prevent tipping points.

SilverLining is an American organization that advances SRM research as part of "climate interventions to reduce near-term climate risks and impacts." It is funded by "philanthropic foundations and individual donors focused on climate change". One of their funders is Quadrature Climate Foundation which "plans to provide $40 million for work in this field over the next three years" (as of 2024).

The Alliance for Just Deliberation on Solar Geoengineering advances "just and inclusive deliberation" regarding SRM, in particular by engaging civil society organisations in the Global South and supporting a broader conversation on SRM governance. The Carnegie Climate Governance Initiative catalyzed governance of SRM and carbon dioxide removal, although it ended operations in 2023.

The Climate Overshoot Commission is a group of global, eminent, and independent figures. It investigated and developed a comprehensive strategy to reduce climate risks. The Commission recommended additional research on SRM alongside a moratorium on deployment and large-scale outdoor experiments. It also concluded that "governance of SRM research should be expanded".

Campaigners have claimed that the fossil fuels lobby advocates for SRM research. However, researchers have pointed out the lack of evidence in support of this claim.

Opposition to deployment and research

Opposition to SRM has come from various academics and NGOs. Common concerns are that SRM could lessen climate change mitigation efforts, that SRM is ultimately ungovernable, and that SRM would cause tensions, or even conflict, between nations. Opponents of SRM research often emphasize that reductions of greenhouse gas emissions would also bring co-benefits (for example reduced air pollution) and that consideration of SRM could prevent these outcomes.

The ETC Group, an environmental justice organization, has been a pioneer in opposing SRM research. It was later joined by the Heinrich Böll Foundation (affiliated with the German Green Party) and the Center for International Environmental Law.

In 2021, researchers at Harvard put plans for an SRM-related field experiment on hold after Indigenous Sámi people objected to the test taking place in their homeland. Although the test would not have involved any atmospheric experiments, members of the Saami Council spoke out against the lack of consultation and SRM more broadly. Speaking at a panel organized by the Center for International Environmental Law and other groups, Saami Council Vice President Åsa Larsson Blind said, "This goes against our worldview that we as humans should live and adapt to nature."

In 2022, a scientific journal Wiley Interdisciplinary Reviews: Climate Change published "Solar geoengineering: The case for an international non-use agreement". The authors argued that geoengineering cannot be used in a responsible manner under the current system of international relations, so the only option is for as many governments as possible to make a commitment they would neither deploy such technologies, nor fund research into them, grant intellectual property rights or host such experiments when conducted by third parties. In 2024, the same journal had published a commentary from a different group of scientists, which criticized the proposed non-use agreement and argued for a more permissive research framework.. The academic paper launched a campaign which, as of December 2024, has been supported by nearly 540 academics and 60 advocacy organizations have endorsed the proposal.

By 2024, U.S. government agencies were allegedly operating an airborne early warning system for detecting small concentrations of aerosols to determine where other countries might be carrying out geoengineering attempts, thought to have unpredictable effects on climate.

Research funding

As of 2018, total research funding worldwide remained modest, at less than 10 million US dollars annually. Almost all research into SRM has to date consisted of computer modeling or laboratory tests, and there are calls for more research funding as the science is poorly understood.

A study from 2022 investigated where the funding for SRM research came from globally. The authors concluded "the primary funders of research do not emanate from fossil capital" and that there are "close ties to mostly US financial and technological capital as well as a number of billionaire philanthropists".

Under the World Climate Research Programme there is a Lighthouse Activity called Research on Climate Intervention as of 2024. This will include research on all possible climate interventions (another term for climate engineering): "large-scale Carbon Dioxide Removal (CDR; also known as Greenhouse Gas Removal, or Negative Emissions Technologies) and Solar Radiation Modification (SRM; also known as Solar Reflection Modification, Albedo Modification, or Radiative Forcing Management)".

Government funding

Few countries have an explicit governmental position on SRM. Those that do, such as the United Kingdom and Germany, support some SRM research even if they do not see it as a current climate policy option. For example, the German Federal Government does have an explicit position on SRM and stated in 2023 in a strategy document climate foreign policy: "Due to the uncertainties, implications and risks, the German Government is not currently considering solar radiation management (SRM) as a climate policy option". The document also stated: "Nonetheless, in accordance with the precautionary principle we will continue to analyse and assess the extensive scientific, technological, political, social and ethical risks and implications of SRM, in the context of technology-neutral basic research as distinguished from technology development for use at scale".

Some countries, such as the U.S., U.K., Argentina, Germany, China, Finland, Norway, and Japan, as well as the European Union, have funded SRM research. NOAA in the United States has spent $22 million USD from 2019 to 2022, with only a few outdoor tests carried out to date. As of 2024, NOAA provides about $11 million USD a year through their solar geoengineering research program.

In 2021, the National Academies of Sciences, Engineering, and Medicine released their consensus study report Recommendations for Solar Geoengineering Research and Research Governance. The report recommended an initial investment into SRM research of $100–200 million over five years.

In late 2024, the Advanced Research and Invention Agency, a British funding agency, announced that research funds totaling 57 million pounds (about $75 million USD) will be made available to support projects which explore "Climate Cooling". This includes outdoor experiments: "This programme aims to answer fundamental questions as to the practicality, measurability, controllability and possible (side-)effects of such approaches through indoor and (where necessary) small, controlled, outdoor experiments." Successful applicants will be announced in 2025.

Non-profits and philanthropic support for research

There are also research activities on SRM that are funded by philanthropy. According to Bloomberg News, as of 2024 several American billionaires are funding research into SRM: "A growing number of Silicon Valley founders and investors are backing research into blocking the sun by spraying reflective particles high in the atmosphere or making clouds brighter." The article listed the following billionaires as being notable geoengineering research supporters: Mike Schroepfer, Sam Altman, Matt Cohler, Rachel Pritzker, Bill Gates, Dustin Moskovitz.

SRM research initiatives, or non-profit knowledge hubs, include for example SRM360 which is "supporting an informed, evidence-based discussion of sunlight reflection methods (SRM)". Funding comes from the LAD Climate Fund. David Keith, a long-term proponent of SRM research, is one of the members of the advisory board.

Another example is Reflective, which is "a philanthropically-funded initiative focused on sunlight reflection research and technology development". Their funding is "entirely by grants or donations from a number of leading philanthropies focused on addressing climate change": Outlier Projects, Navigation Fund, Astera Institute, Open Philanthropy, Crankstart, Matt Cohler, Richard and Sabine Wood.

Deployment activities

Make Sunsets

At least one startup in the private sector has tried to sell "cooling credits" for SRM activities. Make Sunsets launches balloons containing helium and sulfur dioxide. The company sells cooling credits, making the contested claim that each US$10 credit would offset the warming effect of one ton of carbon dioxide warming for a year. Based in California, Make Sunsets conducted some of its first activities in Mexico. In response to these activities, which were conducted without prior notification or consent, the Mexican government announced measures to prohibit SRM experiments within its borders, although it is unclear whether this became actual policy. Even people who advocate for more research into SRM have criticized Make Sunsets' undertaking.

Society and culture

Studies into opinions about SRM have found low levels of awareness, uneasiness with the implementation of SRM, cautious support of research, and a preference for greenhouse gas emissions reduction. Although most public opinion studies have polled residents of developed countries, those that have examined residents of developing countries—which tend to be more vulnerable to climate change impacts—find slightly greater levels of support there.

The largest assessment of public opinion and perception of SRM, which had over 30,000 respondents in 30 countries, found that "Global South publics are significantly more favorable about potential benefits and express greater support for climate-intervention technologies." Though the assessment also found Global South publics had greater concern the technologies could undermine climate-mitigation.

See also

References

  1. ^ de Coninck, H., A. Revi, M. Babiker, P. Bertoldi, M. Buckeridge, A. Cartwright, W. Dong, J. Ford, S. Fuss, J.-C. Hourcade, D. Ley, R. Mechler, P. Newman, A. Revokatova, S. Schultz, L. Steg, and T. Sugiyama, 2018: Strengthening and Implementing the Global Response. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty . In Press. Pg. 348.
  2. ^ Trisos, Christopher H.; Geden, Oliver; Seneviratne, Sonia I.; Sugiyama, Masahiro; van Aalst, Maarten; Bala, Govindasamy; Mach, Katharine J.; Ginzburg, Veronika; de Coninck, Heleen; Patt, Anthony. "Cross-Working Group Box SRM: Solar Radiation Modification" (PDF). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. pp. 221–222. doi:10.1017/9781009325844.004. In Climate Change 2022: Impacts, Adaptation and Vulnerability .
  3. ^ Intergovernmental Panel on Climate Change (IPCC) (6 July 2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed.). Cambridge University Press. doi:10.1017/9781009157896.006. ISBN 978-1-009-15789-6.
  4. ^ UNEP (2023). "One Atmosphere: An Independent Expert Review on Solar Radiation Modification Research and Deployment". UNEP - UN Environment Programme. Retrieved 9 March 2024.
  5. ^ World Meteorological Organization (WMO) (2022). Scientific Assessment of Ozone Depletion: 2022. Geneva: WMO. ISBN 978-9914-733-99-0.
  6. Gernot Wagner (2021). Geoengineering: the Gamble.
  7. Biermann, Frank; Oomen, Jeroen; Gupta, Aarti; Ali, Saleem H.; Conca, Ken; Hajer, Maarten A.; Kashwan, Prakash; Kotzé, Louis J.; Leach, Melissa; Messner, Dirk; Okereke, Chukwumerije; Persson, Åsa; Potočnik, Janez; Schlosberg, David; Scobie, Michelle (2022). "Solar geoengineering: The case for an international non-use agreement". WIREs Climate Change. 13 (3). Bibcode:2022WIRCC..13E.754B. doi:10.1002/wcc.754. ISSN 1757-7780.
  8. Reynolds, Jesse L. (27 September 2019). "Solar geoengineering to reduce climate change: a review of governance proposals". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 475 (2229): 20190255. Bibcode:2019RSPSA.47590255R. doi:10.1098/rspa.2019.0255. PMC 6784395. PMID 31611719.
  9. US Department of Commerce, NOAA. "NOAA/ESRL Global Monitoring Laboratory - THE NOAA ANNUAL GREENHOUSE GAS INDEX (AGGI)". www.esrl.noaa.gov. Archived from the original on 22 September 2013. Retrieved 28 October 2020.
  10. NASA. "The Causes of Climate Change". Climate Change: Vital Signs of the Planet. Archived from the original on 8 May 2019. Retrieved 8 May 2019.
  11. Hansson, Anders; Anshelm, Jonas; Fridahl, Mathias; Haikola, Simon (29 April 2021). "Boundary Work and Interpretations in the IPCC Review Process of the Role of Bioenergy With Carbon Capture and Storage (BECCS) in Limiting Global Warming to 1.5°C". Frontiers in Climate. 3. doi:10.3389/fclim.2021.643224.
  12. Fuhrman, Jay; McJeon, Haewon; Doney, Scott C.; Shobe, William; Clarens, Andres F. (4 December 2019). "From Zero to Hero?: Why Integrated Assessment Modeling of Negative Emissions Technologies Is Hard and How We Can Do Better". Frontiers in Climate. 1. doi:10.3389/fclim.2019.00011.
  13. Carton, Wim (13 November 2020). Carbon Unicorns and Fossil Futures: Whose Emission Reduction Pathways Is the IPCC Performing?. pp. 34–49. doi:10.36019/9781978809390-003. ISBN 978-1-9788-0939-0. Retrieved 24 August 2024. {{cite book}}: |website= ignored (help)
  14. Environment, U. N. (8 November 2023). "Emissions Gap Report 2023". UNEP - UN Environment Programme. Retrieved 10 June 2024.
  15. ^ The Royal Society (2009). Geoengineering the Climate: Science, Governance and Uncertainty (PDF) (Report). London: The Royal Society. ISBN 978-0-85403-773-5. RS1636. Archived (PDF) from the original on 12 March 2014. Retrieved 1 December 2011.
  16. ^ National Research Council (10 February 2015). Climate Intervention: Reflecting Sunlight to Cool Earth -Committee on Geoengineering Climate: Technical Evaluation Discussion of Impacts; National Research Council (U.S.) Division On Earth And Life Studies National Research Council (U.S.) Ocean Studies Board: Board on Atmospheric Sciences Climate. The National Academies Press. ISBN 9780309314824. Archived from the original on 14 December 2019. Retrieved 11 September 2015 – via www.nap.edu.
  17. ^ National Academies of Sciences, Engineering (25 March 2021). Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. doi:10.17226/25762. ISBN 978-0-309-67605-2. S2CID 234327299. Archived from the original on 17 April 2021. Retrieved 17 April 2021.
  18. Scientific Advice Mechanism to the European Commission (9 December 2024). Solar radiation modification: evidence review report (Report). SAPEA. doi:10.5281/zenodo.14283096.
  19. President’s Science Advisory Committee, Environmental Pollution Panel (1 November 1965). Restoring the Quality of Our Environment. Washington: U.S. Government Printing Office.{{cite book}}: CS1 maint: date and year (link)
  20. "Geoengineering: A Short History". Foreign Policy. 2013. Archived from the original on 22 May 2019. Retrieved 7 June 2021.
  21. Budyko, M. I. (1977). Climatic changes. Washington: American Geophysical Union. ISBN 978-0-87590-206-7.
  22. Budyko, M. I. (1977). "On present-day climatic changes". Tellus. 29 (3): 193–204. doi:10.1111/j.2153-3490.1977.tb00725.x.
  23. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Washington, D.C.: National Academies Press. 1 January 1992. doi:10.17226/1605. ISBN 978-0-309-04386-1. Archived from the original on 21 November 2021. Retrieved 6 June 2021.
  24. ^ Kintisch, Eli (18 October 2013). "Dr. Cool" (PDF). Science. 342 (6156): 307–309. Bibcode:2013Sci...342..307K. doi:10.1126/science.342.6156.307. PMID 24136948. Retrieved 30 June 2021.
  25. ^ O'Donnell, Erin (2013). "Buffering the Sun: David Keith and the question of climate engineering". Harvard Magazine. No. July–August. Retrieved 7 July 2021.
  26. ^ Keith, David W.; Dowlatabadi, Hadi (7 July 1992). "A Serious Look at Geoengineering" (PDF). Eos, Transactions American Geophysical Union. 73 (27): 289 and 292–293. Bibcode:1992EOSTr..73..289K. doi:10.1029/91eo00231. Archived from the original (PDF) on 1 October 2015. Retrieved 30 September 2015.
  27. Lieberman, Bruce (2 November 2016). "Geoengineering: crazy...with a big 'but'". Yale Climate Connections. Retrieved 5 February 2018.
  28. Govindasamy, Bala; Caldeira, Ken (15 July 2000). "Geoengineering Earth's radiation balance to mitigate CO 2 ‐induced climate change". Geophysical Research Letters. 27 (14): 2141–2144. doi:10.1029/1999GL006086. ISSN 0094-8276.
  29. Crutzen, Paul J. (25 July 2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change. 77 (3): 211–220. Bibcode:2006ClCh...77..211C. doi:10.1007/s10584-006-9101-y. ISSN 1573-1480. S2CID 154081541.
  30. Self, Stephen; Zhao, Jing-Xia; Holasek, Rick E.; Torres, Ronnie C. & McTaggart, Joey (1999). "The Atmospheric Impact of the 1991 Mount Pinatubo Eruption". Archived from the original on 2 August 2014. Retrieved 25 July 2014.
  31. Mason, Betsy (16 September 2020). "Why solar geoengineering should be part of the climate crisis solution". Knowable Magazine. doi:10.1146/knowable-091620-2.
  32. ^ Keith, David W. (November 2000). "Geoengineering the climate : History and Prospect". Annual Review of Energy and the Environment. 25 (1): 245–284. doi:10.1146/annurev.energy.25.1.245.
  33. Keith, D. W. (2010). "Photophoretic levitation of engineered aerosols for geoengineering". Proceedings of the National Academy of Sciences. 107 (38): 16428–16431. Bibcode:2010PNAS..10716428K. doi:10.1073/pnas.1009519107. PMC 2944714. PMID 20823254.
  34. Weisenstein, D. K.; Keith, D. W. (2015). "Solar geoengineering using solid aerosol in the stratosphere". Atmospheric Chemistry and Physics Discussions. 15 (8): 11799–11851. Bibcode:2015ACP....1511835W. doi:10.5194/acpd-15-11799-2015.
  35. A. J. Ferraro; A. J. Charlton-Perez; E. J. Highwood (2015). "Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols" (PDF). Journal of Geophysical Research: Atmospheres. 120 (2): 414–429. Bibcode:2015JGRD..120..414F. doi:10.1002/2014JD022734. hdl:10871/16214. S2CID 33804616.
  36. Crutzen, P. J. (2006). "Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma?". Climatic Change. 77 (3–4): 211–220. Bibcode:2006ClCh...77..211C. doi:10.1007/s10584-006-9101-y.
  37. Davidson, P.; Burgoyne, C.; Hunt, H.; Causier, M. (2012). "Lifting options for stratospheric aerosol geoengineering: Advantages of tethered balloon systems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 370 (1974): 4263–300. Bibcode:2012RSPTA.370.4263D. doi:10.1098/rsta.2011.0639. PMID 22869799.
  38. "Can a Million Tons of Sulfur Dioxide Combat Climate Change?". Wired.com. 23 June 2008. Archived from the original on 4 February 2014. Retrieved 11 March 2017.
  39. ^ Lenton, T. M.; Vaughan, N. E. (2009). "The radiative forcing potential of different climate geoengineering options" (PDF). Atmos. Chem. Phys. Discuss. 9 (1): 2559–2608. doi:10.5194/acpd-9-2559-2009.
  40. Intergovernmental Panel on Climate Change (IPCC) (22 June 2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed.). Cambridge University Press. p. 2476. doi:10.1017/9781009325844.025. ISBN 978-1-009-32584-4.
  41. Haywood, James; Tilmes, Simone (2022). "Chapter 6: Stratospheric aerosol injection and its potential effect on the stratospheric ozone layer". Scientific assessment of ozone depletion. World Meteorological Organization. pp. 325–383.
  42. Policy Implications of Greenhouse Warming: Mitigation, Adaptation, and the Science Base: Panel on Policy Implications of Greenhouse Warming, National Academy of Sciences, National Academy of Engineering, Institute of Medicine. The National Academies Press. 1992. doi:10.17226/1605. ISBN 978-0-585-03095-1. Archived from the original on 7 June 2011. Retrieved 31 December 2008.
  43. Latham, J. (1990). "Control of global warming" (PDF). Nature. 347 (6291): 339–340. Bibcode:1990Natur.347..339L. doi:10.1038/347339b0. S2CID 4340327. Archived from the original (PDF) on 16 July 2011.
  44. Tim Newcomb (7 July 2022). "Space Bubbles Could Be the Wild Idea We Need to Deflect Solar Radiation". Popular Mechanics. Archived from the original on 1 April 2023. Retrieved 23 May 2023.
  45. Borgue, Olivia; Hein, Andreas M. (10 December 2022). "Transparent occulters: A nearly zero-radiation pressure sunshade to support climate change mitigation". Acta Astronautica. 203 (in press): 308–318. doi:10.1016/j.actaastro.2022.12.006. S2CID 254479656.
  46. Oberth, Hermann (1984) . Die Rakete zu den Planetenräumen (in German). Michaels-Verlag Germany. pp. 87–88.
  47. Oberth, Hermann (1970) . ways to spaceflight. NASA. Retrieved 21 December 2017 – via archiv.org.
  48. Oberth, Hermann (1957). Menschen im Weltraum (in German). Econ Duesseldorf Germany. pp. 125–182.
  49. Oberth, Hermann (1978). Der Weltraumspiegel (in German). Kriterion Bucharest.
  50. The Royal Society (2009). Geoengineering the Climate: Science, Governance and Uncertainty (PDF) (Report). London: The Royal Society. p. 1. ISBN 978-0-85403-773-5. RS1636. Archived (PDF) from the original on 12 March 2014. Retrieved 1 December 2011.
  51. ^ Smith, Wake (21 October 2020). "The cost of stratospheric aerosol injection through 2100". Environmental Research Letters. 15 (11): 114004. Bibcode:2020ERL....15k4004S. doi:10.1088/1748-9326/aba7e7. ISSN 1748-9326. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  52. Moriyama, Ryo; Sugiyama, Masahiro; Kurosawa, Atsushi; Masuda, Kooiti; Tsuzuki, Kazuhiro; Ishimoto, Yuki (8 September 2016). "The cost of stratospheric climate engineering revisited". Mitigation and Adaptation Strategies for Global Change. 22 (8): 1207–1228. doi:10.1007/s11027-016-9723-y. ISSN 1381-2386. S2CID 157441259.
  53. Irvine, Peter; Emanuel, Kerry; He, Jie; Horowitz, Larry W.; Vecchi, Gabriel; Keith, David (April 2019). "Halving warming with idealized solar geoengineering moderates key climate hazards". Nature Climate Change. 9 (4): 295–299. Bibcode:2019NatCC...9..295I. doi:10.1038/s41558-019-0398-8. hdl:1721.1/126780. ISSN 1758-6798. S2CID 84833420. Archived from the original on 12 March 2019. Retrieved 13 March 2019.
  54. Arias, Paola A.; Bellouin, Nicolas; Coppola, Erika; Jones, Richard G.; et al. (2021). "Technical Summary" (PDF). Climate Change 2021: The Physical Science Basis.
  55. Tilmes, Simone; Richter, Jadwiga H.; Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.; Simpson, Isla R.; Glanville, Anne S.; Fasullo, John T.; Phillips, Adam S.; Lamarque, Jean-Francois; Tribbia, Joseph (November 2018). "CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project". Bulletin of the American Meteorological Society. 99 (11): 2361–2371. Bibcode:2018BAMS...99.2361T. doi:10.1175/BAMS-D-17-0267.1. ISSN 0003-0007. S2CID 125977140. Archived from the original on 11 June 2021. Retrieved 11 June 2021.
  56. Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben; Richter, Jadwiga H.; Tilmes, Simone; Mills, Michael J. (28 June 2020). "Seasonally Modulated Stratospheric Aerosol Geoengineering Alters the Climate Outcomes". Geophysical Research Letters. 47 (12): e88337. Bibcode:2020GeoRL..4788337V. doi:10.1029/2020GL088337. ISSN 0094-8276. S2CID 225777399.
  57. Cheng, Wei; MacMartin, Douglas G.; Dagon, Katherine; Kravitz, Ben; Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.; Simpson, Isla R. (16 December 2019). "Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble". Journal of Geophysical Research: Atmospheres. 124 (23): 12773–12793. Bibcode:2019JGRD..12412773C. doi:10.1029/2018JD030237. ISSN 2169-897X. S2CID 203137017.
  58. Bhowmick, Mansi; Mishra, Saroj Kanta; Kravitz, Ben; Sahany, Sandeep; Salunke, Popat (December 2021). "Response of the Indian summer monsoon to global warming, solar geoengineering and its termination". Scientific Reports. 11 (1): 9791. Bibcode:2021NatSR..11.9791B. doi:10.1038/s41598-021-89249-6. ISSN 2045-2322. PMC 8105343. PMID 33963266.
  59. ^ Baur, Susanne; Nauels, Alexander; Nicholls, Zebedee; Sanderson, Benjamin M.; Schleussner, Carl-Friedrich (28 March 2023). "The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty". Earth System Dynamics. 14 (2): 367–381. doi:10.5194/esd-14-367-2023. ISSN 2190-4987. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  60. Intergovernmental Panel on Climate Change (IPCC) (22 June 2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed.). Cambridge University Press. p. 2474. doi:10.1017/9781009325844.025. ISBN 978-1-009-32584-4.
  61. Intergovernmental Panel on Climate Change (IPCC) (6 July 2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed.). Cambridge University Press. p. 629. doi:10.1017/9781009157896.006. ISBN 978-1-009-15789-6.
  62. Parker, Andy; Irvine, Peter J. (March 2018). "The Risk of Termination Shock From Solar Geoengineering". Earth's Future. 6 (3): 456–467. Bibcode:2018EaFut...6..456P. doi:10.1002/2017EF000735. S2CID 48359567.
  63. Rabitz, Florian (16 April 2019). "Governing the termination problem in solar radiation management". Environmental Politics. 28 (3): 502–522. Bibcode:2019EnvPo..28..502R. doi:10.1080/09644016.2018.1519879. ISSN 0964-4016. S2CID 158738431. Archived from the original on 11 June 2021. Retrieved 11 June 2021.
  64. ^ Intergovernmental Panel on Climate Change (IPCC) (22 June 2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed.). Cambridge University Press. p. 19. doi:10.1017/9781009325844.001. ISBN 978-1-009-32584-4.
  65. Gu, L.; et al. (1999). "Responses of Net Ecosystem Exchanges of Carbon Dioxide to Changes in Cloudiness: Results from Two North American Deciduous Forests". Journal of Geophysical Research. 104 (D24): 31421–31, 31434. Bibcode:1999JGR...10431421G. doi:10.1029/1999jd901068. hdl:2429/34802. S2CID 128613057.; Gu, L.; et al. (2002). "Advantages of Diffuse Radiation for Terrestrial Ecosystem Productivity". Journal of Geophysical Research. 107 (D6): ACL 2-1-ACL 2-23. Bibcode:2002JGRD..107.4050G. doi:10.1029/2001jd001242. hdl:2429/34834.; Gu, L.; et al. (March 2003). "Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis" (PDF). Science. 299 (5615): 2035–38. Bibcode:2003Sci...299.2035G. doi:10.1126/science.1078366. PMID 12663919. S2CID 6086118. Archived (PDF) from the original on 21 November 2018. Retrieved 2 June 2018.
  66. Govindasamy, Balan; Caldeira, Ken (2000). "Geoengineering Earth's Radiation Balance to Mitigate CO2-Induced Climate Change". Geophysical Research Letters. 27 (14): 2141–44. Bibcode:2000GeoRL..27.2141G. doi:10.1029/1999gl006086. For the response of solar power systems, see MacCracken, Michael C. (2006). "Geoengineering: Worthy of Cautious Evaluation?". Climatic Change. 77 (3–4): 235–43. Bibcode:2006ClCh...77..235M. doi:10.1007/s10584-006-9130-6.
  67. Erlick, Carynelisa; Frederick, John E (1998). "Effects of aerosols on the wavelength dependence of atmospheric transmission in the ultraviolet and visible 2. Continental and urban aerosols in clear skies". J. Geophys. Res. 103 (D18): 23275–23285. Bibcode:1998JGR...10323275E. doi:10.1029/98JD02119.
  68. Walker, David Alan (1989). "Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density". Philosophical Transactions of the Royal Society B. 323 (1216): 313–326. Bibcode:1989RSPTB.323..313W. doi:10.1098/rstb.1989.0013. Archived from the original on 21 November 2021. Retrieved 20 October 2020.
  69. IPCC, Data Distribution Center. "Representative Concentration Pathways (RCPs)". Intergovernmental Panel on Climate Change. Archived from the original on 21 October 2020. Retrieved 20 October 2020.
  70. Kravitz, Ben; MacMartin, Douglas G. (January 2020). "Uncertainty and the basis for confidence in solar geoengineering research". Nature Reviews Earth & Environment. 1 (1): 64–75. Bibcode:2020NRvEE...1...64K. doi:10.1038/s43017-019-0004-7. ISSN 2662-138X. S2CID 210169322. Archived from the original on 10 May 2021. Retrieved 21 March 2021.
  71. Duan, Lei; Cao, Long; Bala, Govindasamy; Caldeira, Ken (2019). "Climate Response to Pulse Versus Sustained Stratospheric Aerosol Forcing". Geophysical Research Letters. 46 (15): 8976–8984. Bibcode:2019GeoRL..46.8976D. doi:10.1029/2019GL083701. ISSN 1944-8007. S2CID 201283770.
  72. Pongratz, J.; Lobell, D. B.; Cao, L.; Caldeira, K. (2012). "Crop yields in a geoengineered climate". Nature Climate Change. 2 (2): 101. Bibcode:2012NatCC...2..101P. doi:10.1038/nclimate1373. S2CID 86725229.
  73. Proctor, Jonathan; Hsiang, Solomon; Burney, Jennifer; Burke, Marshall; Schlenker, Wolfram (August 2018). "Estimating global agricultural effects of geoengineering using volcanic eruptions". Nature. 560 (7719): 480–483. Bibcode:2018Natur.560..480P. doi:10.1038/s41586-018-0417-3. ISSN 0028-0836. PMID 30089909. S2CID 51939867. Archived from the original on 12 June 2021. Retrieved 11 June 2021.
  74. Smith, Wake; Bhattarai, Umang; MacMartin, Douglas G; Lee, Walker Raymond; Visioni, Daniele; Kravitz, Ben; Rice, Christian V Rice (15 September 2022). "A subpolar-focused stratospheric aerosol injection deployment scenario". Environmental Research Communications. 4 (9): 095009. Bibcode:2022ERCom...4i5009S. doi:10.1088/2515-7620/ac8cd3.
  75. Trisos, Christopher H.; Amatulli, Giuseppe; Gurevitch, Jessica; Robock, Alan; Xia, Lili; Zambri, Brian (22 January 2018). "Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination". Nature Ecology & Evolution. 2 (3): 475–482. Bibcode:2018NatEE...2..475T. doi:10.1038/s41559-017-0431-0. ISSN 2397-334X. PMID 29358608. S2CID 256707843.
  76. Reynolds, Jesse L. (23 May 2019). The Governance of Solar Geoengineering: Managing Climate Change in the Anthropocene (1 ed.). Cambridge University Press. doi:10.1017/9781316676790. ISBN 978-1-316-67679-0. S2CID 197798234.
  77. Biermann, Frank; Oomen, Jeroen; Gupta, Aarti; Ali, Saleem H.; Conca, Ken; Hajer, Maarten A.; Kashwan, Prakash; Kotzé, Louis J.; Leach, Melissa; Messner, Dirk; Okereke, Chukwumerije; Persson, Åsa; Potočnik, Janez; Schlosberg, David; Scobie, Michelle (2022). "Solar geoengineering: The case for an international non-use agreement". WIREs Climate Change. 13 (3). Bibcode:2022WIRCC..13E.754B. doi:10.1002/wcc.754. ISSN 1757-7780.
  78. Ricke, K. L.; Moreno-Cruz, J. B.; Caldeira, K. (2013). "Strategic incentives for climate geoengineering coalitions to exclude broad participation". Environmental Research Letters. 8 (1): 014021. Bibcode:2013ERL.....8a4021R. doi:10.1088/1748-9326/8/1/014021.
  79. Horton, Joshua (2011). "Geoengineering and the myth of unilateralism: pressures and prospects for international cooperation". Stanford J Law Sci Policy (2): 56–69.
  80. Intergovernmental Panel on Climate Change (IPCC) (22 June 2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed.). Cambridge University Press. p. 2477. doi:10.1017/9781009325844.025. ISBN 978-1-009-32584-4.
  81. Intergovernmental Panel on Climate Change (IPCC), ed. (17 August 2023), "International Cooperation", Climate Change 2022 - Mitigation of Climate Change (1 ed.), Cambridge University Press, p. 1494, doi:10.1017/9781009157926.016, ISBN 978-1-009-15792-6, retrieved 24 June 2024
  82. Gernot Wagner (2021). Geoengineering: the Gamble.
  83. Victor, David G. (2008). "On the regulation of geoengineering". Oxford Review of Economic Policy. 24 (2): 322–336. CiteSeerX 10.1.1.536.5401. doi:10.1093/oxrep/grn018.
  84. Parson, Edward A. (April 2014). "Climate Engineering in Global Climate Governance: Implications for Participation and Linkage". Transnational Environmental Law. 3 (1): 89–110. doi:10.1017/S2047102513000496. ISSN 2047-1025. S2CID 56018220. Archived from the original on 21 November 2021. Retrieved 11 June 2021.
  85. Adam, David (1 September 2008). "Extreme and risky action the only way to tackle global warming, say scientists". The Guardian. Archived from the original on 6 August 2019. Retrieved 23 May 2009.
  86. Millard-Ball, A. (2011). "The Tuvalu Syndrome". Climatic Change. 110 (3–4): 1047–1066. doi:10.1007/s10584-011-0102-0. S2CID 153990911.
  87. Urpelainen, Johannes (10 February 2012). "Geoengineering and global warming: a strategic perspective". International Environmental Agreements: Politics, Law and Economics. 12 (4): 375–389. Bibcode:2012IEAPL..12..375U. doi:10.1007/s10784-012-9167-0. ISSN 1567-9764. S2CID 154422202.
  88. Goeschl, Timo; Heyen, Daniel; Moreno-Cruz, Juan (20 March 2013). "The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks" (PDF). Environmental and Resource Economics. 56 (1): 85–104. Bibcode:2013EnREc..56...85G. doi:10.1007/s10640-013-9647-x. hdl:10419/127358. ISSN 0924-6460. S2CID 52213135. Archived (PDF) from the original on 4 December 2020. Retrieved 6 June 2021.
  89. Moreno-Cruz, Juan B. (1 August 2015). "Mitigation and the geoengineering threat". Resource and Energy Economics. 41: 248–263. Bibcode:2015REEco..41..248M. doi:10.1016/j.reseneeco.2015.06.001. hdl:1853/44254.
  90. "Home - call-for-balance.com". www.call-for-balance.com. Retrieved 9 March 2024.
  91. "An open letter regarding research on reflecting sunlight to reduce the risks of climate change". climate intervention research letter. Retrieved 9 March 2024.
  92. "Climate Change: Have We Lost the Battle?". www.imeche.org. November 2009. Retrieved 9 March 2024.
  93. Reekie, Tristan; Howard, Will (April 2012). "Geoengineering" (PDF). Retrieved 9 March 2024.
  94. Brom, F. (2013). Riphagen, M (ed.). Klimaatengineering: hype, hoop of wanhoop?. Rathenau Instituut. ISBN 978-90-77364-51-2.
  95. "Position statement on climate intervention". AGU. January 2018. Retrieved 9 March 2024.
  96. Climate Science Special Report (Report). U.S. Global Change Research Program, Washington, DC. 2017. pp. 1–470.
  97. "Reflecting Sunlight to Reduce Climate Risk: Priorities for Research and International Cooperation". Council on Foreign Relations. April 2022. Retrieved 10 March 2024.
  98. ^ "Research to Inform Decisions about Climate Intervention". www.wcrp-climate.org. December 2024. Retrieved 9 March 2024.
  99. "Report of the World Commission on the Ethics of Scientific Knowledge and Technology (COMEST) on the ethics of climate engineering". unesdoc.unesco.org. 2023. Retrieved 9 March 2024.
  100. European Commission. Directorate General for Research and Innovation.; European Commission. Group of Chief Scientific Advisors. (2024). Solar radiation modification. LU: Publications Office. doi:10.2777/391614.
  101. "An open letter regarding research on reflecting sunlight to reduce the risks of climate change". climate intervention research letter. Retrieved 12 January 2025.
  102. "Home - call-for-balance.com". www.call-for-balance.com. Retrieved 12 January 2025.
  103. ^ "About". The Degrees Initiative. Retrieved 10 October 2023.
  104. https://www.operaatioarktis.fi/
  105. ^ "About". SilverLining. Retrieved 19 December 2024.
  106. "SilverLining Announces $20.5 Million in Funding to Advance its Governance and Equity Initiatives on Near-Term Climate Risk and Climate Intervention". SilverLining. Retrieved 18 December 2024.
  107. ^ Temple, James (14 June 2024). "This London nonprofit is now one of the biggest backers of geoengineering research". MIT Technology Review. Retrieved 15 January 2025.
  108. "About". DSG. Retrieved 10 March 2024.
  109. "C2G Mission". C2G. Retrieved 10 March 2024.
  110. "Commission". Overshoot Commission. Retrieved 28 October 2024.
  111. "Reducing the Risks of Climate Overshoot". Overshoot Commission. 2023. Retrieved 11 March 2024.
  112. "Fuel to the Fire: How Geoengineering Threatens to Entrench Fossil Fuels and Accelerate the Climate Crisis (Feb 2019)". Center for International Environmental Law. Retrieved 9 March 2024.
  113. Hamilton, Clive (12 February 2015). "Opinion | The Risks of Climate Engineering". The New York Times. ISSN 0362-4331. Archived from the original on 10 June 2021. Retrieved 11 June 2021.
  114. Reynolds, Jesse L.; Parker, Andy; Irvine, Peter (December 2016). "Five solar geoengineering tropes that have outstayed their welcome: Five solar geoengineering tropes". Earth's Future. 4 (12): 562–568. doi:10.1002/2016EF000416. S2CID 36263104.
  115. ^ Biermann, Frank; Oomen, Jeroen; Gupta, Aarti; Ali, Saleem H.; Conca, Ken; Hajer, Maarten A.; Kashwan, Prakash; Kotzé, Louis J.; Leach, Melissa; Messner, Dirk; Okereke, Chukwumerije; Persson, Åsa; Potočnik, Janez; Schlosberg, David; Scobie, Michelle (May 2022). "Solar geoengineering: The case for an international non-use agreement". WIREs Climate Change. 13 (3). Bibcode:2022WIRCC..13E.754B. doi:10.1002/wcc.754. ISSN 1757-7780.
  116. "CAN Position: Solar Radiation Modification (SRM), September 2019". Climate Action Network. Retrieved 9 June 2024.
  117. "Climate & Geoengineering | ETC Group". www.etcgroup.org. Retrieved 10 March 2024.
  118. "Geoengineering | Heinrich Böll Stiftung". www.boell.de. Retrieved 10 March 2024.
  119. "Geoengineering". Center for International Environmental Law. Retrieved 10 March 2024.
  120. Dunleavy, Haley (7 July 2021). "An Indigenous Group's Objection to Geoengineering Spurs a Debate About Social Justice in Climate Science". Inside Climate News. Archived from the original on 19 July 2021. Retrieved 19 July 2021.
  121. "Open letter requesting cancellation of plans for geoengineering related test flights in Kiruna". Sámiráđđi (in Norwegian). 2 March 2021. Archived from the original on 19 July 2021. Retrieved 19 July 2021.
  122. Parson, Edward A.; Buck, Holly J.; Jinnah, Sikina; Moreno-Cruz, Juan; Nicholson, Simon (2024). "Toward an evidence-informed, responsible, and inclusive debate on solar geoengineering: A response to the proposed non-use agreement". WIREs Climate Change. 15 (5): e903. doi:10.1002/wcc.903. ISSN 1757-7799.
  123. "Signatories". Solar Geoengineering Non-Use Agreement. Retrieved 14 March 2024.
  124. "Endorsements". Solar Geoengineering Non-Use Agreement. Retrieved 14 March 2024.
  125. Flavelle, Christopher (28 November 2024). "The U.S. Is Building an Early Warning System to Detect Geoengineering". The New York Times. Archived from the original on 2 December 2024.
  126. "Funding for Solar Geoengineering from 2008 to 2018". geoengineering.environment.harvard.edu. 13 November 2018. Archived from the original on 6 June 2021. Retrieved 6 June 2021.
  127. Loria, Kevin (20 July 2017). "A last-resort 'planet-hacking' plan could make Earth habitable for longer – but scientists warn it could have dramatic consequences". Business Insider. Archived from the original on 12 January 2019. Retrieved 7 August 2017.
  128. "Give research into solar geoengineering a chance". Nature. 593 (7858): 167. 12 May 2021. Bibcode:2021Natur.593..167.. doi:10.1038/d41586-021-01243-0. PMID 33981056.
  129. Surprise, Kevin; Sapinski, Jp (2023). "Whose climate intervention? Solar geoengineering, fractions of capital, and hegemonic strategy". Capital & Class. 47 (4): 539–564. doi:10.1177/03098168221114386. ISSN 0309-8168.
  130. "UK government's view on greenhouse gas removal technologies and solar radiation management". GOV.UK. Retrieved 9 March 2024.
  131. ^ Bundesumweltministeriums (6 December 2023). "Klimaaußenpolitik-Strategie der Bundesregierung (KAP)- BMUV - Download". bmuv.de (in German). Retrieved 9 March 2024.
  132. "Funding for Solar Geoengineering from 2008 to 2018". geoengineering.environment.harvard.edu. 13 November 2018. Retrieved 9 March 2024.
  133. Temple, James (1 July 2022). "The US government is developing a solar geoengineering research plan". MIT Technology Review. Retrieved 16 April 2022.
  134. Flavelle, Christopher; Gelles, David (13 September 2024). "U.K. to Fund 'Small-Scale' Outdoor Geoengineering Tests". The New York Times. ISSN 0362-4331. Retrieved 15 January 2025.
  135. Symes, Mark (2024) Exploring Options for Actively Cooling the Earth Programme thesis v2.0, ARIA, United Kingdom
  136. "Exploring Climate Cooling". ARIA. Retrieved 15 January 2025.
  137. "Silicon Valley's Elite Pour Money Into Blotting Out the Sun". Bloomberg.com. 25 October 2024. Retrieved 10 December 2024.
  138. "Homepage". SRM360. Retrieved 10 December 2024.
  139. "Governance and Funding". SRM360. Retrieved 10 December 2024.
  140. "LAD Climate Fund: Clear-Eyed, Comprehensive Climate Strategy". LAD Climate Fund. Retrieved 10 December 2024.
  141. "Advisory Group". SRM360. Retrieved 10 December 2024.
  142. ^ "About". Reflective. Retrieved 10 December 2024.
  143. "Make Sunsets". makesunsets.com. Retrieved 9 March 2024.
  144. "Cooling Credits: a cost-effective solution for climate change – Make Sunsets". makesunsets.com. Retrieved 16 October 2024.
  145. Secretaría de Medio Ambiente y Recursos, Gobierno de México. "La experimentación con geoingeniería solar no será permitida en México". gob.mx (in Spanish). Retrieved 16 October 2024.
  146. Julia Simon. "Startups want to cool Earth by reflecting sunlight. There are few rules and big risks". NPR. Retrieved 11 June 2024. In the past year, the conversation around solar geoengineering as a climate solution has become more serious, says David Keith ... Suddenly we're getting conversations with senior political leaders and senior people in the environmental world who are starting to think about this and engage with it seriously in a way that just wasn't happening five years ago,
  147. Merk, Christine; Pönitzsch, Gert; Kniebes, Carola; Rehdanz, Katrin; Schmidt, Ulrich (10 February 2015). "Exploring public perceptions of stratospheric sulfate injection". Climatic Change. 130 (2): 299–312. Bibcode:2015ClCh..130..299M. doi:10.1007/s10584-014-1317-7. ISSN 0165-0009. S2CID 154196324.
  148. Burns, Elizabeth T.; Flegal, Jane A.; Keith, David W.; Mahajan, Aseem; Tingley, Dustin; Wagner, Gernot (November 2016). "What do people think when they think about solar geoengineering? A review of empirical social science literature, and prospects for future research: REVIEW OF SOLAR GEOENGINEERING". Earth's Future. 4 (11): 536–542. doi:10.1002/2016EF000461.
  149. Dannenberg, Astrid; Zitzelsberger, Sonja (October 2019). "Climate experts' views on geoengineering depend on their beliefs about climate change impacts". Nature Climate Change. 9 (10): 769–775. Bibcode:2019NatCC...9..769D. doi:10.1038/s41558-019-0564-z. ISSN 1758-678X. PMC 6774770. PMID 31579402.
  150. Carr, Wylie A.; Yung, Laurie (March 2018). "Perceptions of climate engineering in the South Pacific, Sub-Saharan Africa, and North American Arctic". Climatic Change. 147 (1–2): 119–132. Bibcode:2018ClCh..147..119C. doi:10.1007/s10584-018-2138-x. ISSN 0165-0009. S2CID 158821464.
  151. Sugiyama, Masahiro; Asayama, Shinichiro; Kosugi, Takanobu (3 July 2020). "The North–South Divide on Public Perceptions of Stratospheric Aerosol Geoengineering?: A Survey in Six Asia-Pacific Countries". Environmental Communication. 14 (5): 641–656. Bibcode:2020Ecomm..14..641S. doi:10.1080/17524032.2019.1699137. ISSN 1752-4032. S2CID 212981798. Archived from the original on 11 June 2021. Retrieved 11 June 2021.
  152. Baum, Chad M.; Fritz, Livia; Low, Sean; Sovacool, Benjamin K. (6 March 2024). "Public perceptions and support of climate intervention technologies across the Global North and Global South". Nature Communications. 15 (1): 2060. Bibcode:2024NatCo..15.2060B. doi:10.1038/s41467-024-46341-5. ISSN 2041-1723. PMC 10918186. PMID 38448460.
Climate change
Overview
Causes
Overview
Sources
History
Effects and issues
Physical
Flora and fauna
Social and economic
By country and region
Mitigation
Economics and finance
Energy
Preserving and enhancing
carbon sinks
Personal
Society and adaptation
Society
Adaptation
Communication
International agreements
Background and theory
Measurements
Theory
Research and modelling
Categories:
Solar radiation modification Add topic