Misplaced Pages

Quantum invariant

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Quantum invariants) Concept in mathematical knot theory

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.

List of invariants

See also

References

  1. ^ Reshetikhin, N.; Turaev, V. G. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Inventiones Mathematicae. 103 (3): 547–597. doi:10.1007/BF01239527. MR 1091619.
  2. Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
  3. Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
  4. Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194.
  5. Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222.
  6. Petit, Jerome (1999). "The invariant of Turaev-Viro from Group category" (PDF). hal.archives-ouvertes.fr. Retrieved 2019-11-04.
  7. Lawton, Sean (June 28, 2007). "Generators of SL ( 2 , C ) {\displaystyle \operatorname {SL} (2,\mathbb {C} )} -Character Varieties of Arbitrary Rank Free Groups" (PDF). The 7th KAIST Geometric Topology Fair. Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022.

Further reading

External links


Stub icon

This knot theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Quantum invariant Add topic