Misplaced Pages

Isotopes of plutonium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Plutonium-234)

Isotopes of plutonium (94Pu)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Pu trace 87.7 y α U
SF
Pu trace 2.411×10 y α U
SF
Pu trace 6.561×10 y α U
SF
Pu synth 14.329 y β Am
α U
SF
Pu synth 3.75×10 y α U
SF
Pu trace 8.13×10 y α U
SF

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being Pu in 1940. Twenty-two plutonium radioisotopes have been characterized. The most stable are Pu with a half-life of 80.8 million years; Pu with a half-life of 373,300 years; and Pu with a half-life of 24,110 years; and Pu with a half-life of 6,560 years. This element also has eight meta states; all have half-lives of less than one second.

The known isotopes of plutonium range from Pu to Pu. The primary decay modes before the most stable isotope, Pu, are spontaneous fission and alpha decay; the primary mode after is beta emission. The primary decay products before Pu are isotopes of uranium and neptunium (not considering fission products), and the primary decay products after are isotopes of americium.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Isotopic
abundance
Excitation energy
Pu 94 132 226.03825(22)# ≥1 ms α U 0+
Pu 94 133 227.03947(11)# 0.78+0.39
−0.19 s
α U 5/2+#
Pu 94 134 228.038763(25) 2.1(13) s α U 0+
Pu 94 135 229.040145(65) 91(26) s α (~50%) U 3/2+#
β (~50%) Np
SF (<7%) (various)
Pu 94 136 230.039648(16) 105(10) s α (>73%) U 0+
β (<27%) Np
Pu 94 137 231.041126(24) 8.6(5) min β (87%) Np (3/2+)
α (13%) U
Pu 94 138 232.041182(18) 33.7(5) min EC (>80%) Np 0+
α (<20%) U
Pu 94 139 233.042997(58) 20.9(4) min β (99.88%) Np 5/2+#
α (0.12%) U
Pu 94 140 234.0433175(73) 8.8(1) h EC (94%) Np 0+
α (6%) U
Pu 94 141 235.045285(22) 25.3(5) min β Np (5/2+)
α (0.0028%) U
Pu 94 142 236.0460567(19) 2.858(8) y α U 0+
SF (1.9×10%) (various)
CD (2×10%) Pb
Mg
Pu 1185.45(15) keV 1.2(3) μs IT Pu 5−
Pu 94 143 237.0484079(18) 45.64(4) d EC Np 7/2−
α (0.0042%) U
Pu 145.543(8) keV 180(20) ms IT Pu 1/2+
Pu 2900(250) keV 1.1(1) μs SF (various)
Pu 94 144 238.0495582(12) 87.7(1) y α U 0+ Trace
SF (1.9×10%) (various)
CD (1.4×10%) Hg
Si
CD (<6×10%) Pb
Mg
CD (<6×10%) Pb
Mg
Pu 94 145 239.0521616(12) 2.411(3)×10 y α U 1/2+ Trace
SF (3.1×10%) (various)
Pu 391.584(3) keV 193(4) ns IT Pu 7/2−
Pu 3100(200) keV 7.5(10) μs SF (various) (5/2+)
Pu 94 146 240.0538117(12) 6.561(7)×10 y α U 0+ Trace
SF (5.796×10%) (various)
CD (<1.3×10%) Hg
Si
Pu 1308.74(5) keV 165(10) ns IT Pu 5−
Pu 94 147 241.0568497(12) 14.329(29) y β Am 5/2+
α (0.00245%) U
SF (<2.4×10%) (various)
Pu 161.6853(9) keV 0.88(5) μs IT Pu 1/2+
Pu 2200(200) keV 20.5(22) μs SF (various)
Pu 94 148 242.0587410(13) 3.75(2)×10 y α U 0+
SF (5.510×10%) (various)
Pu 94 149 243.0620021(27) 4.9553(25) h β Am 7/2+
Pu 383.64(25) keV 330(30) ns IT Pu (1/2+)
Pu 94 150 244.0642044(25) 8.13(3)×10 y α (99.88%) U 0+ Trace
SF (0.123%) (various)
ββ (<7.3×10%) Cm
Pu 1216.0(5) keV 1.75(12) s IT Pu 8−
Pu 94 151 245.067825(15) 10.5(1) h β Am (9/2−)
Pu 264.5(3) keV 330(20) ns IT Pu (5/2+)
Pu 2000(400) keV 90(30) ns SF (various)
Pu 94 152 246.070204(16) 10.84(2) d β Am 0+
Pu 94 153 247.07430(22)# 2.27(23) d β Am 1/2+#
This table header & footer:
  1. Pu – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    CD: Cluster decay
    EC: Electron capture
    IT: Isomeric transition
    SF: Spontaneous fission
  5. Bold italics symbol as daughter – Daughter product is nearly stable.
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Theorized to also undergo ββ decay to U
  10. Double beta decay product of U
  11. ^ fissile nuclide
  12. Most useful isotope for nuclear weapons
  13. Neutron capture product of U
  14. Intermediate decay product of Pu
  15. Interstellar, some may also be primordial but such claims are disputed

Actinides vs fission products

Actinides and fission products by half-life
Actinides by decay chain Half-life
range (a)
Fission products of U by yield
4n 4n + 1 4n + 2 4n + 3 4.5–7% 0.04–1.25% <0.001%
Ra 4–6 a Eu
Bk > 9 a
Cm Pu Cf Ac 10–29 a Sr Kr Cd
U Pu Cm 29–97 a Cs Sm Sn
Cf Am 141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

Am Cf 430–900 a
Ra Bk 1.3–1.6 ka
Pu Th Cm Am 4.7–7.4 ka
Cm Cm 8.3–8.5 ka
Pu 24.1 ka
Th Pa 32–76 ka
Np U U 150–250 ka Tc Sn
Cm Pu 327–375 ka Se
1.33 Ma Cs
Np 1.61–6.5 Ma Zr Pd
U Cm 15–24 Ma I
Pu 80 Ma

... nor beyond 15.7 Ma

Th U U 0.7–14.1 Ga

Notable isotopes

Production and uses

A pellet of Pu, glowing from its own heat, used for radioisotope thermoelectric generators.
Transmutation flow between Pu and Cm in LWR.
Transmutation speed not shown and varies greatly by nuclide. Cm–Cm are long-lived with negligible decay.

Pu, a fissile isotope that is the second most used nuclear fuel in nuclear reactors after uranium-235, and the most used fuel in the fission portion of nuclear weapons, is produced from uranium-238 by neutron capture followed by two beta decays.

Pu, Pu, and Pu are produced by further neutron capture. The odd-mass isotopes Pu and Pu have about a 3/4 chance of undergoing fission on capture of a thermal neutron and about a 1/4 chance of retaining the neutron and becoming the next heavier isotope. The even-mass isotopes are fertile but not fissile and also have a lower probability (cross section) of neutron capture; therefore, they tend to accumulate in nuclear fuel used in a thermal reactor, the design of nearly all nuclear power plants today. In plutonium that has been used a second time in thermal reactors in MOX fuel, Pu may even be the most common isotope. All plutonium isotopes and other actinides, however, are fissionable with fast neutrons. Pu does have a moderate thermal neutron absorption cross section, so that Pu production in a thermal reactor becomes a significant fraction as large as Pu production.

Pu has a half-life of 14 years, and has slightly higher thermal neutron cross sections than Pu for both fission and absorption. While nuclear fuel is being used in a reactor, a Pu nucleus is much more likely to fission or to capture a neutron than to decay. Pu accounts for a significant portion of fissions in thermal reactor fuel that has been used for some time. However, in spent nuclear fuel that does not quickly undergo nuclear reprocessing but instead is cooled for years after use, much or most of the Pu will beta decay to americium-241, one of the minor actinides, a strong alpha emitter, and difficult to use in thermal reactors.

Pu has a particularly low cross section for thermal neutron capture; and it takes three neutron absorptions to become another fissile isotope (either curium-245 or Pu) and fission. Even then, there is a chance either of those two fissile isotopes will fail to fission but instead absorb a fourth neutron, becoming curium-246 (on the way to even heavier actinides like californium, which is a neutron emitter by spontaneous fission and difficult to handle) or becoming Pu again; so the mean number of neutrons absorbed before fission is even higher than 3. Therefore, Pu is particularly unsuited to recycling in a thermal reactor and would be better used in a fast reactor where it can be fissioned directly. However, Pu's low cross section means that relatively little of it will be transmuted during one cycle in a thermal reactor. Pu's half-life is about 15 times as long as Pu's half-life; therefore, it is 1/15 as radioactive and not one of the larger contributors to nuclear waste radioactivity. Pu's gamma ray emissions are also weaker than those of the other isotopes.

Pu has a half-life of only 5 hours, beta decaying to americium-243. Because Pu has little opportunity to capture an additional neutron before decay, the nuclear fuel cycle does not produce the long-lived Pu in significant quantity.

Pu is not normally produced in as large quantity by the nuclear fuel cycle, but some is produced from neptunium-237 by neutron capture (this reaction can also be used with purified neptunium to produce Pu relatively free of other plutonium isotopes for use in radioisotope thermoelectric generators), by the (n,2n) reaction of fast neutrons on Pu, or by alpha decay of curium-242, which is produced by neutron capture of Am. It has significant thermal neutron cross section for fission, but is more likely to capture a neutron and become Pu.

Manufacture

Plutonium-240, -241 and -242

The fission cross section for Pu is 747.9 barns for thermal neutrons, while the activation cross section is 270.7 barns (the ratio approximates to 11 fissions for every 4 neutron captures). The higher plutonium isotopes are created when the uranium fuel is used for a long time. For high burnup used fuel, the concentrations of the higher plutonium isotopes will be higher than the low burnup fuel that is reprocessed to obtain weapons grade plutonium.

The formation of Pu, Pu, and Pu from U
Isotope Thermal neutron
cross section
(barns)
Decay
Mode
Half-life
Capture Fission
U 2.683 0.000 α 4.468 x 10 years
U 20.57 14.11 β 23.45 minutes
Np 77.03 β 2.356 days
Pu 270.7 747.9 α 24,110 years
Pu 287.5 0.064 α 6,561 years
Pu 363.0 1012 β 14.325 years
Pu 19.16 0.001 α 373,300 years

Plutonium-239

Main article: Plutonium-239
A 5.3 kg ring of weapons-grade electrorefined plutonium, 99.96% purity. This is enough plutonium for an efficient nuclear weapon. The ring shape is needed to depart from a spherical shape and avoid criticality.

Pu is one of the three fissile materials used for the production of nuclear weapons and in some nuclear reactors as a source of energy. The other fissile materials are uranium-235 and uranium-233. Pu is virtually nonexistent in nature. It is made by bombarding uranium-238 with neutrons. Uranium-238 is present in quantity in most reactor fuel; hence Pu is continuously made in these reactors. Since Pu can itself be split by neutrons to release energy, Pu provides a portion of the energy generation in a nuclear reactor.

The formation of Pu from U
Element Isotope Thermal neutron capture
cross section (barn)
Thermal neutron fission
Cross section (barn)
decay mode Half-life
U 238 2.68 5·10 α 4.47 x 10 years
U 239 22 15 β 23 minutes
Np 239 30 1 β 2.36 days
Pu 239 271 750 α 24,110 years

Plutonium-238

Main article: Plutonium-238

There are small amounts of Pu in the plutonium from usual reactors. However, isotopic separation would be quite expensive compared to another method: when U captures a neutron, it is converted to an excited state of U. Some of the excited U nuclei undergo fission, but some decay to the ground state of U by emitting gamma radiation. Further neutron capture creates U; which, with a half-life of 7 days, decays to Np. Since nearly all neptunium is produced in this way or consists of isotopes that decay quickly, one gets nearly pure Np. After chemical separation of neptunium, Np is again irradiated by reactor neutrons to be converted to Np, which decays to Pu with a half-life of 2 days.

The formation of Pu from U
Element Isotope Thermal neutron
cross section
decay mode Half-life
U 235 99 α 703,800,000 years
U 236 5.3 α 23,420,000 years
U 237 β 6.75 days
Np 237 165 (capture) α 2,144,000 years
Np 238 β 2.11 days
Pu 238 α 87.7 years

Plutonium-240 as an obstacle to nuclear weapons

Pu undergoes spontaneous fission at a small but significant rate (5.8×10%). The presence of Pu limits the plutonium's use in a nuclear bomb, because a neutron from spontaneous fission starts the chain reaction prematurely, causing an early release of energy that disperses the core before full implosion is reached. This prevents most of the core from participation in the chain reaction and reduces the bomb's yield.

Plutonium consisting of more than about 90% Pu is called weapons-grade plutonium; plutonium from spent nuclear fuel from commercial power reactors generally contains at least 20% Pu and is called reactor-grade plutonium. However, modern nuclear weapons use fusion boosting, which mitigates the predetonation problem; if the pit can generate a nuclear weapon yield of even a fraction of a kiloton, which is enough to start deuterium–tritium fusion, the resulting burst of neutrons will fission enough plutonium to ensure a yield of tens of kilotons.

Contamination due to Pu is the reason plutonium weapons must use the implosion method. Theoretically, pure Pu could be used in a gun-type bomb, but achieving this level of purity is prohibitively difficult. Pu contamination has proven a mixed blessing. While it created delays and headaches during the Manhattan Project because of the need to develop implosion technology, those same difficulties are a barrier to nuclear proliferation. Implosion bombs are also inherently more efficient and less prone to accidental detonation than are gun-type bombs.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Magurno & Pearlstein 1981, pp. 835 ff.
  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. Kuznetsova AA, Svirikhin AI, Isaev AV, Bychkov MA, Danilkin VD, Devarazha KM, Zamyatin NI, Izosimov IN, Liu Z, Malyshev ON, Mukhin RS, Popeko AG, Popov YA, Rachkov VA, Saylaubekov B, Sokol EA, Tezekbaeva MS, Ulanova II, Zhang FS, Chepigin VI, Chelnokov ML, Eremin AV (2024). "Свойства радиоактивного распада нового ядра Pu" [Properties of Radioactive Decay of the New Nucleus Pu] (PDF). jinr.ru (in Russian). Joint Institute for Nuclear Research. Retrieved 9 November 2024.
  5. Yang, H. B.; Gan, Z. G.; Zhang, Z. Y.; Huang, M. H.; Ma, L.; Yang, C. L.; Zhang, M. M.; Tian, Y. L.; Wang, Y. S.; Wang, J. G.; Zhou, H. B.; Hua, W.; Wang, J. Y.; Qiang, Y. H.; Zhao, Z.; Huang, X. Y.; Wen, X. J.; Li, Z. Y.; Zhang, H. T.; Xu, S. Y.; Li, Z. C.; Zhou, H.; Zhang, X.; Zhu, L.; Wang, Z.; Guan, F.; Yang, H. R.; Huang, W. X.; Ren, Z. Z.; Zhou, S. G.; Xu, H. S. (3 October 2024). "α decay of the new isotope Pu 227". Physical Review C. 110 (4). doi:10.1103/PhysRevC.110.044302.
  6. Wilson, G. L.; Takeyama, M.; Andreyev, A. N.; Andel, B.; Antalic, S.; Catford, W. N.; Ghys, L.; Haba, H.; Heßberger, F. P.; Huang, M.; Kaji, D.; Kalaninova, Z.; Morimoto, K.; Morita, K.; Murakami, M.; Nishio, K.; Orlandi, R.; Smith, A. G.; Tanaka, K.; Wakabayashi, Y.; Yamaki, S. (13 October 2017). "β -delayed fission of Am 230". Physical Review C. 96 (4): 044315. doi:10.1103/PhysRevC.96.044315. ISSN 2469-9985.
  7. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  8. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  9. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk with a half-life greater than 9 . No growth of Cf was detected, and a lower limit for the β half-life can be set at about 10 . No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 ."
  10. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  11. Excluding those "classically stable" nuclides with half-lives significantly in excess of Th; e.g., while Cd has a half-life of only fourteen years, that of Cd is eight quadrillion years.
  12. Makhijani, Arjun; Seth, Anita (July 1997). "The Use of Weapons Plutonium as Reactor Fuel" (PDF). Energy and Security. Takoma Park, MD: Institute for Energy and Environmental Research. Retrieved 4 July 2016.
  13. Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P. (2015). "Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis". Nature Communications. 6: 5956. arXiv:1509.08054. Bibcode:2015NatCo...6.5956W. doi:10.1038/ncomms6956. ISSN 2041-1723. PMC 4309418. PMID 25601158.
  14. Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, Giorgos; Papaioannou, Dimitri (April 2004). "Neutron and Gamma Ray Source Evaluation of LWR High Burn-up UO2 and MOX Spent Fuels". Journal of Nuclear Science and Technology. 41 (4): 448–456. doi:10.3327/jnst.41.448.
  15. "Plutonium Isotopic Results of Known Samples Using the Snap Gamma Spectroscopy Analysis Code and the Robwin Spectrum Fitting Routine" (PDF). Archived from the original (PDF) on 2017-08-13. Retrieved 2013-03-15.
  16. National Nuclear Data Center Interactive Chart of Nuclides Archived 2011-07-21 at the Wayback Machine
  17. Miner 1968, p. 541

Sources

Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Main isotopes of plutonium
Categories:
Isotopes of plutonium Add topic