Misplaced Pages

Order-7 tetrahedral honeycomb

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Order-7 tetrahedral honeycomb
Type Hyperbolic regular honeycomb
Schläfli symbols {3,3,7}
Coxeter diagrams
Cells {3,3}
Faces {3}
Edge figure {7}
Vertex figure {3,7}
Dual {7,3,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,7}. It has seven tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-7 triangular tiling vertex arrangement.

Images


Poincaré disk model (cell-centered)

Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

Related polytopes and honeycombs

It is a part of a sequence of regular polychora and honeycombs with tetrahedral cells, {3,3,p}.

{3,3,p} polytopes
Space S H
Form Finite Paracompact Noncompact
Name {3,3,3}
{3,3,4}

{3,3,5}
{3,3,6}

{3,3,7}
{3,3,8}

... {3,3,∞}

Image
Vertex
figure

{3,3}

{3,4}


{3,5}

{3,6}


{3,7}

{3,8}


{3,∞}

It is a part of a sequence of hyperbolic honeycombs with order-7 triangular tiling vertex figures, {p,3,7}.

{3,3,7} {4,3,7} {5,3,7} {6,3,7} {7,3,7} {8,3,7} {∞,3,7}

It is a part of a sequence of hyperbolic honeycombs, {3,p,7}.

Order-8 tetrahedral honeycomb

Order-8 tetrahedral honeycomb
Type Hyperbolic regular honeycomb
Schläfli symbols {3,3,8}
{3,(3,4,3)}
Coxeter diagrams
=
Cells {3,3}
Faces {3}
Edge figure {8}
Vertex figure {3,8}
{(3,4,3)}
Dual {8,3,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the order-8 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,8}. It has eight tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-8 triangular tiling vertex arrangement.


Poincaré disk model (cell-centered)

Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(3,4,3)}, Coxeter diagram, , with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is = .

Infinite-order tetrahedral honeycomb

Infinite-order tetrahedral honeycomb
Type Hyperbolic regular honeycomb
Schläfli symbols {3,3,∞}
{3,(3,∞,3)}
Coxeter diagrams
=
Cells {3,3}
Faces {3}
Edge figure {∞}
Vertex figure {3,∞}
{(3,∞,3)}
Dual {∞,3,3}
Coxeter group
Properties Regular

In the geometry of hyperbolic 3-space, the infinite-order tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,∞}. It has infinitely many tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an infinite-order triangular tiling vertex arrangement.


Poincaré disk model (cell-centered)

Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(3,∞,3)}, Coxeter diagram, = , with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is = .

See also

References

External links

Categories:
Order-7 tetrahedral honeycomb Add topic