Misplaced Pages

Marine debris

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ocean dumping) Human-created solid waste in the sea or ocean "Ocean dumping" redirects here. For shipping of waste across international borders, see Environmental dumping.

Marine debris washed up on a beach at Sharm el-Naga, Egypt
Part of a series on
Pollution
Air pollution from a factory
Air
Biological
Digital
Electromagnetic
Natural
Noise
Radiation
Soil
Solid waste
Space
Thermal
Visual
War
Water
Topics
Misc
Lists
Categories

Marine debris, also known as marine litter, is human-created solid material that has deliberately or accidentally been released in seas or the ocean. Floating oceanic debris tends to accumulate at the center of gyres and on coastlines, frequently washing aground, when it is known as beach litter or tidewrack. Deliberate disposal of wastes at sea is called ocean dumping. Naturally occurring debris, such as driftwood and drift seeds, are also present. With the increasing use of plastic, human influence has become an issue as many types of (petrochemical) plastics do not biodegrade quickly, as would natural or organic materials. The largest single type of plastic pollution (~10%) and majority of large plastic in the oceans is discarded and lost nets from the fishing industry. Waterborne plastic poses a serious threat to fish, seabirds, marine reptiles, and marine mammals, as well as to boats and coasts.

Dumping, container spillages, litter washed into storm drains and waterways and wind-blown landfill waste all contribute to this problem. This increased water pollution has caused serious negative effects such as discarded fishing nets capturing animals, concentration of plastic debris in massive marine garbage patches, and increasing concentrations of contaminants in the food chain.

In efforts to prevent and mediate marine debris and pollutants, laws and policies have been adopted internationally, with the UN including reduced marine pollution in Sustainable Development Goal 14 "Life Below Water". Depending on relevance to the issues and various levels of contribution, some countries have introduced more specified protection policies. Moreover, some non-profits, NGOs, and government organizations are developing programs to collect and remove plastics from the ocean. However, in 2017 the UN estimated that by 2050 there will be more plastic than fish in the oceans if substantial measures are not taken.

Types

Debris on beach near Dar es Salaam, Tanzania
Debris collected from beaches on Tern Island in the French Frigate Shoals over one month

Researchers classify debris as either land- or ocean-based; in 1991, the United Nations Joint Group of Experts on the Scientific Aspects of Marine Pollution estimated that up to 80% of the pollution was land-based, with the remaining 20% originating from catastrophic events or maritime sources. More recent studies have found that more than half of plastic debris found on Korean shores is ocean-based.

A wide variety of man-made objects can become marine debris; plastic bags, balloons, buoys, rope, medical waste, glass and plastic bottles, cigarette stubs, cigarette lighters, beverage cans, polystyrene, lost fishing line and nets, and various wastes from cruise ships and oil rigs are among the items commonly found to have washed ashore. Six-pack rings, in particular, are considered emblematic of the problem.

The U.S. military used ocean dumping for unused weapons and bombs, including ordinary bombs, Unexploded ordnance (UXO), landmines and chemical weapons from at least 1919 until 1970. Millions of pounds of ordnance were disposed of in the Gulf of Mexico and off the coasts of at least 16 states, from New Jersey to Hawaii (although these, of course, do not wash up onshore, and the U.S. is not the only country who has practiced this).

Eighty percent of marine debris is plastic. Plastics accumulate because they typically do not biodegrade as many other substances do. They photodegrade on exposure to sunlight, although they do so only under dry conditions, as water inhibits photolysis. In a 2014 study using computer models, scientists from the group 5 Gyres, estimated 5.25 trillion pieces of plastic weighing 269,000 tons were dispersed in oceans in similar amount in the Northern and Southern Hemispheres.

Persistent industrial marine debris

Some materials and activities used in industrial activities that do not readily degrade, that persist in the environment, and tend to accumulate over time. The activities can include fishing, boating, and aquaculture industries that harvest or use resources in the marine environment and may lose or discard gear, materials, machinery or solid wastes from industrial processes into the water or onto shorelines. This can include anything as large as a fishing boat or as small as particle from a Styrofoam lobster float. In 2003, a study was conducted to identify types, amounts, sources, and effects of persistent industrial marine debris in the coastal waters and along the shores of Charlotte County, New Brunswick, and examine any relationship between the amount and types of persistent industrial marine debris, and the types and numbers of industrial operations nearby. Materials like plastic or foam can break down into smaller particles and may look like small sea creatures to wildlife such as birds, cetaceans, and fish, and they may eat these particles. Indigestible material may accumulate in the gut creating blockages or a false sense of fullness and eventually death from lack of appropriate nutrient intake.

Ghost nets

This section is an excerpt from Ghost net.
A sea turtle entangled in a ghost net.

Ghost nets are fishing nets that have been abandoned, lost, or otherwise discarded in the ocean, lakes, and rivers. These nets, often nearly invisible in the dim light, can be left tangled on a rocky reef or drifting in the open sea. They can entangle fish, dolphins, sea turtles, sharks, dugongs, crocodiles, seabirds, crabs, and other creatures, including the occasional human diver. Acting as designed, the nets restrict movement, causing starvation, laceration and infection, and suffocation in those that need to return to the surface to breathe.

It's estimated that around 48 million tons (48,000 kt) of lost fishing gear is generated each year, not including those that were abandoned or discarded and these may linger in the oceans for a considerable time before breaking-up.

Macroplastic

Main article: Marine plastic pollution

Microplastics

This section is an excerpt from Marine plastic pollution § Microplastics.

A growing concern regarding plastic pollution in the marine ecosystem is the use of microplastics. Microplastics are beads of plastic less than 5 millimeters wide, and they are commonly found in hand soaps, face cleansers, and other exfoliators. When these products are used, the microplastics go through the water filtration system and into the ocean, but because of their small size they are likely to escape capture by the preliminary treatment screens on wastewater plants. These beads are harmful to the organisms in the ocean, especially filter feeders, because they can easily ingest the plastic and become sick. The microplastics are such a concern because it is difficult to clean them up due to their size, so humans can try to avoid using these harmful plastics by purchasing products that use environmentally safe exfoliates.

Because plastic is so widely used across the planet, microplastics have become widespread in the marine environment. For example, microplastics can be found on sandy beaches and surface waters as well as in the water column and deep sea sediment. Microplastics are also found within the many other types of marine particles such as dead biological material (tissue and shells) and some soil particles (blown in by wind and carried to the ocean by rivers). Population density and proximity to urban centers have been considered the main factors that influence the abundance of microplastics in the environment.

Deep-sea debris

Marine debris is found on the floor of the Arctic ocean. Although an increasing number of studies have been focused on plastic debris accumulation on the coasts, in off-shore surface waters, and that ingested by marine organisms that live in the upper levels of the water column, there is limited information on debris in the mesopelagic and deeper layers. Studies that have been done have conducted research through bottom sampling, video observation via remotely operated vehicles (ROVs), and submersibles. They are also mostly limited to one-off projects that do not extend long enough to show significant effects of deep-sea debris over time. Research thus far has shown that debris in the deep-ocean is in fact impacted by anthropogenic activities, and plastic has been frequently observed in the deep-sea, especially in areas off-shore of heavily populated regions, such as the Mediterranean.

Litter, made from diverse materials that are lighter than surface water (such as glasses, metals and some plastics), have been found to spread over the floor of seas and open oceans, where it can become entangled in corals and interfere with other sea-floor life, or even become buried under sediment, making clean-up extremely difficult, especially due to the wide area of its dispersal compared to shipwrecks. Plastics that are usually negatively buoyant can sink with the adherence of phytoplankton and the aggregation of other organic particles. Other oceanic processes that affect circulation, such as coastal storms and offshore convection, play a part in transferring large volumes of particles and debris. Submarine topographic features can also augment downwelling currents, leading to the retention of microplastics at certain locations.

A Deep-sea Debris database by the Global Oceanographic Data Center of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), showing thirty years of photos and samples of marine debris since 1983, was made public in 2017. From the 5,010 dives in the database, using both ROVs and deep-sea submersibles, 3,425 man-made debris items were counted. The two most significant types of debris were macro-plastic, making up 33% of the debris found – 89% of which was single-use – and metal, making up 26%. Plastic debris was found at the bottom of the Mariana Trench, at a depth of 10,898m, and plastic bags were found entangled in hydrothermal vent and cold seep communities.

Garbage patches (gyres)

This section is an excerpt from Garbage patch. A garbage patch is a gyre of marine debris particles caused by the effects of ocean currents and increasing plastic pollution by human populations. These human-caused collections of plastic and other debris are responsible for ecosystem and environmental problems that affect marine life, contaminate oceans with toxic chemicals, and contribute to greenhouse gas emissions. Once waterborne, marine debris becomes mobile. Flotsam can be blown by the wind, or follow the flow of ocean currents, often ending up in the middle of oceanic gyres where currents are weakest.

Sources

The travel of the Friendly Floatees

The 10 largest emitters of oceanic plastic pollution worldwide are, from the most to the least, China, Indonesia, Philippines, Vietnam, Sri Lanka, Thailand, Egypt, Malaysia, Nigeria, and Bangladesh, largely through the rivers Yangtze, Indus, Yellow, Hai, Nile, Ganges, Pearl, Amur, Niger, and the Mekong, and accounting for "90 percent of all the plastic that reaches the world's oceans."

An estimated 10,000 containers at sea each year are lost by container ships, usually during storms. One spillage occurred in the Pacific Ocean in 1992, when thousands of rubber ducks and other toys (now known as the "Friendly Floatees") went overboard during a storm. The toys have since been found all over the world, providing a better understanding of ocean currents. Similar incidents have happened before, such as when Hansa Carrier dropped 21 containers (with one notably containing buoyant Nike shoes).

In 2007, MSC Napoli beached in the English Channel, dropping hundreds of containers, most of which washed up on the Jurassic Coast, a World Heritage Site. A 2021 study following a 2014 loss of a container carrying printer cartridges calculated that some cartridges had dispersed at an average speed of between 6 cm and 13 cm per second. A 1997 accident of Tokio Express ship off the British coast resulted in loss of cargo container holding 5 million Lego pieces. Some of the pieces became valued among collectors who searched the beaches for Lego dragons. It also provided valuable insight in studying marine plastic degradation.

In Halifax Harbour, Nova Scotia, 52% of items were generated by recreational use of an urban park, 14% from sewage disposal and only 7% from shipping and fishing activities. Around four-fifths of oceanic debris is from rubbish blown onto the water from landfills, and urban runoff.

Some studies show that marine debris may be dominant in particular locations. For example, a 2016 study of Aruba found that debris found the windward side of the island was predominantly marine debris from distant sources. In 2013, debris from six beaches in Korea was collected and analyzed: 56% was found to be "ocean-based" and 44% "land-based".

In the 1987 Syringe Tide, medical waste washed ashore in New Jersey after having been blown from Fresh Kills Landfill. On the remote sub-Antarctic island of South Georgia, fishing-related debris, approximately 80% plastics, are responsible for the entanglement of large numbers of Antarctic fur seals.

Thirteen companies have an individual contribution of 1% or more of the total branded plastic observed in the audit events: The Coca-Cola Company, PepsiCo, Nestlé, Danone, Altria, Bakhresa Group, Wings, Unilever, Mayora Indah, Mondelez International, Mars, Incorporated, Salim Group, and British American Tobacco. All 13 companies produce food, beverage, or tobacco products. The top company, The Coca-Cola Company, was responsible for 11% (CI95% = 10 to 12%), significantly greater than any other company. The top 5 companies were responsible for 24% of the branded plastic; 56 companies were responsible for greater than 50% of the branded plastic; and 19,586 companies were responsible for all of the branded plastic. The contributions of the top companies may be an underestimation because there were brands that were not attributed to a company, and there were many unbranded objects.

Environmental impacts

The remains of an albatross containing ingested flotsam.

Not all anthropogenic artifacts placed in the oceans are harmful. Iron and concrete structures typically do little damage to the environment because they generally sink to the bottom and become immobile, and at shallow depths they can even provide scaffolding for artificial reefs. Ships and subway cars have been deliberately sunk for that purpose.

Additionally, hermit crabs have been known to use pieces of beach litter as a shell when they cannot find an actual seashell of the size they need.

Impacts from plastic pollution

Main article: Marine plastic pollution

Many animals that live on or in the sea consume flotsam by mistake, as it often looks similar to their natural prey. Overall, 1288 marine species are known to ingest plastic debris, with fish making up the largest fraction. Bulky plastic debris may become permanently lodged in the digestive tracts of these animals, blocking the passage of food and causing death through starvation or infection. Tiny floating plastic particles also resemble zooplankton, which can lead filter feeders to consume them and cause them to enter the ocean food chain. In addition, plastic in the marine environment that contaminates the food chain can have repercussions on the viability of fish and shellfish species.

COVID-19 pandemic impacts

In Kenya, the COVID-19 pandemic has impacted the amount of marine debris found on beaches with around 55% being a pandemic-related trash items. Although the pandemic-related trash has shown up along the beaches of Kenya, it has not made its way into the water. The reduction of litter in the ocean could be a result of the closing of beaches and lack of movement during the pandemic, so less trash was likely to end up in the ocean. Additional impacts of the COVID-19 pandemic have been seen in Hong Kong, where disposable masks have ended up along the beaches of Soko’s islands. This may be attributed to the increased production of medical products (masks and gloves) during the pandemic, leading to a rise in unconventional disposal of these products.

Removal

Skimmer boat used to remove floating debris and trash from the Potomac and Anacostia rivers
Debris skimmer boat in the Port of Barcelona

Coastal and river clean ups

Techniques for collecting and removing marine (or riverine) debris include the use of debris skimmer boats (pictured). Devices such as these can be used where floating debris presents a danger to navigation. For example, the US Army Corps of Engineers removes 90 tons of "drifting material" from San Francisco Bay every month. The Corps has been doing this work since 1942, when a seaplane carrying Admiral Chester W. Nimitz collided with a piece of floating debris and sank, costing the life of its pilot. The Ocean cleanup has also created a vessel for cleaning up riverine debris, called Interceptor. Once debris becomes "beach litter", collection by hand and specialized beach-cleaning machines are used to gather the debris.

There are also projects that stimulate fishing boats to remove any litter they accidentally fish up while fishing for fish.

Elsewhere, "trash traps" are installed on small rivers to capture waterborne debris before it reaches the sea. For example, South Australia's Adelaide operates a number of such traps, known as "trash racks" or "gross pollutant traps" on the Torrens River, which flows (during the wet season) into Gulf St Vincent.

In lakes or near the coast, manual removal can also be used. Project AWARE for example promotes the idea of letting dive clubs clean up litter, for example as a diving exercise.

Once a year there is a diving marine debris removal operation in Scapa Flow in Orkney, run by Ghost Fishing UK, funded by World Animal Protection and Fat Face Foundation.

Cleanup of marine debris can be stymied by inadequate collaboration across levels of government, and a patchwork of regulatory authorities (responsibility often differs for the ocean surface, the seabed, and the shore). For example, there are an estimated 1600 abandoned and derelict boats in the waters of British Columbia. In 2019 Canada's federal government passed legislation to make it illegal to abandon a vessel but enforcement is hampered because it is often difficult to determine who owns an abandoned boat since owners are not required to have a license – licensing is a provincial government responsibility. The Victoria-based non-profit Dead Boats Disposal Society notes that lack of enforcement means abandoned boats are often left to sink, which increases the cleanup cost and compounds the environmental hazard (due to seepage of fuel, oil, plastics, and other pollutants).

Mid-ocean clean ups

On the sea, the removal of artificial debris (i.e. plastics) is still in its infancy. However, some projects have been started which used ships with nets (Ocean Voyages Institute/Kaisei 2009 & 2010 and New Horizon 2009) to catch some plastics, primarily for research purposes. There is also Bluebird Marine System's SeaVax which was solar- and wind-powered and had an onboard shredder and cargo hold. The Sea Cleaners' Manta ship is similar in concept.

Another method to gather artificial litter has been proposed by The Ocean Cleanup's Boyan Slat. He suggested using platforms with arms to gather the debris, situated inside the current of gyres. The SAS Ocean Phoenix ship is somewhat similar in design.

In June 2019, Ocean Voyages Institute, conducted a cleanup utilizing GPS trackers and existing maritime equipment in the North Pacific Subtropical Convergence Zone setting the record for the largest mid-ocean cleanup accomplished in the North Pacific Gyre and removed over 84,000 pounds of polymer nets and consumer plastic trash from the ocean.

In May/June 2020, Ocean Voyages Institute conducted a cleanup expedition in the Gyre and set a new record for the largest mid-ocean cleanup accomplished in the North Pacific Gyre which removed over 170 tons (340,000 pounds) of consumer plastics and ghostnets from the ocean. Utilizing custom designed GPS satellite trackers which are deployed by vessels of opportunity, Ocean Voyages Institute is able to accurately track and send cleanup vessels to remove ghostnets. The GPS Tracker technology is being combined with satellite imagery increasing the ability to locate plastic trash and ghostnets in real time via satellite imagery which will greatly increase cleanup capacity and efficiency.

Another issue is that removing marine debris from the ocean can potentially cause more harm than good. Cleaning up microplastics could also accidentally take out plankton, which are the main lower level food group for the marine food chain and over half of the photosynthesis on earth. One of the most efficient and cost effective ways to help reduce the amount of plastic entering our oceans is to not participate in using single-use plastics, avoid plastic bottled drinks such as water bottles, use reusable shopping bags, and to buy products with reusable packaging.

Laws and treaties

The ocean is a global common, so negative externalities of marine debris are not usually experienced by the producer. In the 1950s, the importance of government intervention with marine pollution protocol was recognized at the First Conference on the Law of the Sea.

Ocean dumping is controlled by international law, including:

  • The London Convention (1972) – a United Nations agreement to control ocean dumping This Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter consisted of twenty two articles addressing expectations of contracting parties. The three annexes defined many compounds, substances, and materials that are unacceptable to deposit into the ocean. Examples of such matter include: mercury compounds, lead, cyanides, and radioactive wastes.
  • MARPOL 73/78 – a convention designed to minimize pollution of the seas, including dumping, oil and exhaust pollution The original MARPOL convention did not consider dumping from ships, but was revised in 1978 to include restrictions on marine vessels.
  • UNCLOS – signed in 1982, but effective in 1994, United Nations Convention on the Law of the Sea emphasized the importance of protecting the entire ocean and not only specified coastal regions. UNCLOS enforced restrictions on pollution, including a stress on land-based sources.

Australian law

One of the earliest anti-dumping laws was Australia's Beaches, Fishing Grounds and Sea Routes Protection Act 1932, which prohibited the discharge of "garbage, rubbish, ashes or organic refuse" from "any vessel in Australian waters" without prior written permission from the federal government. It also required permission for scuttling. The act was passed in response to large amounts of garbage washing up on the beaches of Sydney and Newcastle from vessels outside the reach of local governments and the New South Wales government. It was repealed and replaced by the Environment Protection (Sea Dumping) Act 1981, which gave effect to the London Convention.

European law

In 1972 and 1974, conventions were held in Oslo and Paris respectively, and resulted in the passing of the OSPAR Convention, an international treaty controlling marine pollution in the north-east Atlantic Ocean. The Barcelona Convention protects the Mediterranean Sea. The Water Framework Directive of 2000 is a European Union directive committing EU member states to free inland and coastal waters from human influence. In the United Kingdom, the Marine and Coastal Access Act 2009 is designed to "ensure clean healthy, safe, productive and biologically diverse oceans and seas, by putting in place better systems for delivering sustainable development of marine and coastal environment". In 2019, the EU parliament voted for an EU-wide ban on single-use plastic products such as plastic straws, cutlery, plates, and drink containers, polystyrene food and drink containers, plastic drink stirrers and plastic carrier bags and cotton buds. The law will take effect in 2021.

United States law

A sign above a storm drain in Colorado Springs warning people to not pollute the local stream by dumping. Eighty percent of marine debris reaches the sea via rivers.

In the waters of the United States, there have been many observed consequences of pollution including: hypoxic zones, harmful agal blooms, and threatened species. In 1972, the United States Congress passed the Ocean Dumping Act, giving the Environmental Protection Agency power to monitor and regulate the dumping of sewage sludge, industrial waste, radioactive waste and biohazardous materials into the nation's territorial waters. The Act was amended sixteen years later to include medical wastes. It is illegal to dispose of any plastic in US waters.

Ownership

Property law, admiralty law and the law of the sea may be of relevance when lost, mislaid, and abandoned property is found at sea. Salvage law rewards salvors for risking life and property to rescue the property of another from peril. On land the distinction between deliberate and accidental loss led to the concept of a "treasure trove". In the United Kingdom, shipwrecked goods should be reported to a Receiver of Wreck, and if identifiable, they should be returned to their rightful owner.

Activism

A large number of groups and individuals are active in preventing or educating about marine debris. For example, 5 Gyres is an organization aimed at reducing plastics pollution in the oceans, and was one of two organizations that recently researched the Great Pacific Garbage Patch. Heal the Bay is another organization, focusing on protecting California's Santa Monica Bay, by sponsoring beach cleanup programs along with other activities. Marina DeBris is an artist focusing most of her recent work on educating people about beach trash. Interactive sites like Adrift demonstrate where marine plastic is carried, over time, on the worlds ocean currents.

On 11 April 2013 in order to create awareness, artist Maria Cristina Finucci founded the Garbage Patch State at UNESCO –Paris in front of Director General Irina Bokova. First of a series of events under the patronage of UNESCO and of Italian Ministry of the Environment.

Forty-eight plastics manufacturers from 25 countries, are members of the Global Plastic Associations for solutions on Marine Litter, have made the pledge to help prevent marine debris and to encourage recycling.

Mitigation

The decomposition times of marine debris

Marine debris is a widespread problem, not only the result of activities in coastal regions.

Plastic debris from inland states come from two main sources: ordinary litter and materials from open dumps and landfills that blow or wash away to inland waterways and wastewater outflows. The refuse finds its way from inland waterways, rivers, streams and lakes to the ocean. Though ocean and coastal area cleanups are important, it is crucial to address plastic waste that originates from inland and landlocked states.

At the systems level, there are various ways to reduce the amount of debris entering our waterways:

  • Improve waste transportation to and from sites by utilizing closed container storage and shipping
  • Restrict open waste facilities near waterways
  • Promote the use of refuse-derived fuels. Used plastic with low residual value often does not get recycled and is more likely to leak into the ocean. However, turning these unwanted plastics that would otherwise stay in landfills into refuse-derived fuels allows for further use; they can be used as supplement fuels at power plants
  • Improve recovery rates for plastic (in 2012, the United States generated 11.46 million tons of plastic waste, of which only 6.7% was recovered
  • Adapt Extended Producer Responsibility strategies to make producers responsible for product management when products and their packaging become waste; encourage reusable product design to minimize negative impacts on the environment.
  • Ban the use of cigarette filters and establish a deposit-system for e-cigarettes (similar to the one used for propane canisters)
Seven simple single-use swaps people can make to save trash

Consumers can help to reduce the amount of plastic entering waterways by reducing usage of single-use plastics, avoiding microbeads, participate in a river or lake beach cleanup.

See also

References

  1. Graham, Rachel (10 July 2019). "Euronews Living | Watch: Italy's answer to the problem with plastic". living.
  2. "Dumped fishing gear is biggest plastic polluter in ocean, finds report". The Guardian. 6 November 2019. Retrieved 9 April 2021.
  3. ^ "Facts about marine debris". US NOAA. Archived from the original on 13 February 2009. Retrieved 10 April 2008.
  4. "FEATURE: UN's mission to keep plastics out of oceans and marine life". UN News. 27 April 2017. Retrieved 8 December 2020.
  5. Sheavly, S. B.; Register, K. M. (2007). "Marine Debris & Plastics: Environmental Concerns, Sources, Impacts and Solutions". Journal of Polymers and the Environment. 15 (4): 301–305. Bibcode:2007JPEnv..15..301S. doi:10.1007/s10924-007-0074-3. S2CID 136943560.
  6. Weiss, K.R. (2017). "The pileup of plastic debris is more than ugly ocean litter". Knowable Magazine. doi:10.1146/knowable-120717-211902. Archived from the original on 9 December 2017.
  7. Jang, Yong Chang; Lee, Jongmyoung; Hong, Sunwook; Lee, Jong Su; Shim, Won Joon; Song, Young Kyoung (6 July 2014). "Sources of plastic marine debris on beaches of Korea: More from the ocean than the land". Ocean Science Journal. 49 (2): 151–162. Bibcode:2014OSJ....49..151J. doi:10.1007/s12601-014-0015-8. S2CID 85429593.
  8. Cecil Adams (16 July 1999). "Should you cut up six-pack rings so they don't choke sea birds?". The Straight Dope. Archived from the original on 6 October 2008. Retrieved 11 August 2008.
  9. Edgar B. Herwick III (29 July 2015). "Explosive Beach Objects – Just Another Example Of Massachusetts' Charm". WGBH news. PBS. Archived from the original on 3 August 2015. Retrieved 4 August 2015.
  10. "Military Ordinance [sic] Dumped in Gulf of Mexico". Maritime Executive. 3 August 2015. Archived from the original on 7 August 2015. Retrieved 4 August 2015.
  11. Alan Weisman (2007). The World Without Us. St. Martin's Thomas Dunne Books. pp. 112–128. ISBN 978-0312347291.
  12. Alan Weisman (Summer 2007). "Polymers Are Forever". Orion magazine. Archived from the original on 16 May 2008. Retrieved 1 July 2008.
  13. "5 Trillion Pieces of Ocean Trash Found, But Fewer Particles Than Expected". 13 December 2014. Archived from the original on 5 February 2015. Retrieved 25 January 2015.
  14. Smith, Christine. "Persistent Industrial Marine Debris: The Relationship Between Marine Debris and Coastal Industrial Activity in Charlotte County New Brunswick". Retrieved 22 March 2023.
  15. Macfadyen, G. (2009). Abandoned, lost or otherwise discarded fishing gear. Rome: United Nations Environment Programme. ISBN 978-92-5-106196-1.
  16. Esteban, Michelle (2002) Tracking Down Ghost Nets
  17. "'Ghost fishing' killing seabirds". BBC News. 28 June 2007. Retrieved 1 April 2008.
  18. Kuczenski, Brandon; Vargas Poulsen, Camila; Gilman, Eric L.; Musyl, Michael; Geyer, Roland; Wilson, Jono (30 July 2021). "Plastic gear loss estimates from remote observation of industrial fishing activity". Fish and Fisheries. 23: 22–33. doi:10.1111/faf.12596. S2CID 238820992.
  19. Wiggin, K. J.; Holland, E. B. (June 2019). "Validation and application of cost and time effective methods for the detection of 3–500 μm sized microplastics in the urban marine and estuarine environments surrounding Long Beach, California". Marine Pollution Bulletin. 143: 152–162. Bibcode:2019MarPB.143..152W. doi:10.1016/j.marpolbul.2019.03.060. ISSN 0025-326X. PMID 31789151. S2CID 150122831.
  20. Fendall, Lisa S.; Sewell, Mary A. (2009). "Contributing to marine pollution by washing your face: Microplastics in facial cleansers". Marine Pollution Bulletin. 58 (8): 1225–1228. Bibcode:2009MarPB..58.1225F. doi:10.1016/j.marpolbul.2009.04.025. PMID 19481226.
  21. De-la-Torre, Gabriel E.; Dioses-Salinas, Diana C.; Castro, Jasmin M.; Antay, Rosabel; Fernández, Naomy Y.; Espinoza-Morriberón, D.; Saldaña-Serrano, Miguel (2020). "Abundance and distribution of microplastics on sandy beaches of Lima, Peru". Marine Pollution Bulletin. 151: 110877. Bibcode:2020MarPB.15110877D. doi:10.1016/j.marpolbul.2019.110877. PMID 32056653. S2CID 211112493.
  22. Karlsson, Therese M.; Kärrman, Anna; Rotander, Anna; Hassellöv, Martin (2020). "Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters". Environmental Science and Pollution Research. 27 (5): 5559–5571. Bibcode:2020ESPR...27.5559K. doi:10.1007/s11356-019-07274-5. PMC 7028838. PMID 31853844.
  23. "Plastic trash invades arctic seafloor". CBS News. Archived from the original on 25 October 2012.
  24. ^ Chiba, S., Saito, H., Fletcher, R., Yogi, T., Kayo, M., Miyagi, S., ... & Fujikura, K. (2018). Human footprint in the abyss: 30 year records of deep-sea plastic debris. Marine Policy, 96, 204–212.
  25. Goodman, Alexa J.; Walker, Tony R.; Brown, Craig J.; Wilson, Brittany R.; Gazzola, Vicki; Sameoto, Jessica A. (1 January 2020). "Benthic marine debris in the Bay of Fundy, eastern Canada: Spatial distribution and categorization using seafloor video footage". Marine Pollution Bulletin. 150: 110722. Bibcode:2020MarPB.15010722G. doi:10.1016/j.marpolbul.2019.110722. PMID 31733907.
  26. Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L., Coppock, R., Sleight, V., ... & Thompson, R. C. (2014). The deep sea is a major sink for microplastic debris. Royal Society open science, 1(4), 140317. doi:10.1098/rsos.140317.
  27. Jambeck, Jenna R.; Geyer, Roland; Wilcox, Chris (12 February 2015). "Plastic waste inputs from land into the ocean" (PDF). Science. 347 (6223): 768–771. Bibcode:2015Sci...347..768J. doi:10.1126/science.1260352. PMID 25678662. S2CID 206562155. Archived from the original (PDF) on 22 January 2019. Retrieved 28 August 2018.
  28. Christian Schmidt; Tobias Krauth; Stephan Wagner (11 October 2017). "Export of Plastic Debris by Rivers into the Sea" (PDF). Environmental Science & Technology. 51 (21): 12246–12253. Bibcode:2017EnST...5112246S. doi:10.1021/acs.est.7b02368. PMID 29019247. The 10 top-ranked rivers transport 88–95% of the global load into the sea
  29. Harald Franzen (30 November 2017). "Almost all plastic in the ocean comes from just 10 rivers". Deutsche Welle. Retrieved 18 December 2018. It turns out that about 90 percent of all the plastic that reaches the world's oceans gets flushed through just 10 rivers: The Yangtze, the Indus, Yellow River, Hai River, the Nile, the Ganges, Pearl River, Amur River, the Niger, and the Mekong (in that order).
  30. Janice Podsada (19 June 2001). "Lost Sea Cargo: Beach Bounty or Junk?". National Geographic News. Archived from the original on 6 April 2008. Retrieved 8 April 2008.
  31. Marsha Walton (28 May 2003). "How sneakers, toys and hockey gear help ocean science". CNN. Archived from the original on 8 April 2008. Retrieved 8 April 2008.
  32. "Scavengers take washed-up goods". BBC News. 22 January 2007. Archived from the original on 9 February 2008. Retrieved 8 April 2008.
  33. Wilson, Jonathan (29 April 2021). "Ship's lost plastic cargo washes up on shores from Florida to Norway". E&T Magazine. Retrieved 1 May 2021.
  34. "How long does it take for plastic to degrade: the Lego bricks study". The Fact Source. 19 July 2021. Retrieved 20 August 2021.
  35. Walker, T.R.; Grant, J.; Archambault, M-C. (2006). "Accumulation of marine debris on an intertidal beach in an urban park (Halifax Harbour, Nova Scotia)" (PDF). Water Quality Research Journal of Canada. 41 (3): 256–262. doi:10.2166/wqrj.2006.029.
  36. "Plastic Debris: from Rivers to Sea" (PDF). Algalita Marine Research Foundation. Archived from the original (PDF) on 19 August 2008. Retrieved 29 May 2008.
  37. Scisciolo, Tobia (2016). "Beach debris on Aruba, Southern Caribbean: Attribution to local land-based and distal marine-based sources". Marine Pollution Bulletin. 106 (–2): 49–57. Bibcode:2016MarPB.106...49D. doi:10.1016/j.marpolbul.2016.03.039. PMID 27039956.
  38. Yong, C (2013). "Sources of plastic marine debris on beaches of Korea: More from the ocean than the land". Ocean Science Journal. 49 (2): 151–162. Bibcode:2014OSJ....49..151J. doi:10.1007/s12601-014-0015-8. S2CID 85429593.
  39. Alfonso Narvaez (8 December 1987). "New York City to Pay Jersey Town $1 Million Over Shore Pollution". The New York Times. Archived from the original on 11 March 2009. Retrieved 25 June 2008.
  40. "A Summary of the Proposed Comprehensive Conservation and Management Plan". New York-New Jersey Harbor Estuary Program. February 1995. Archived from the original on 24 May 2005. Retrieved 25 June 2008.
  41. Walker, T. R.; Reid, K.; Arnould, J. P. Y.; Croxall, J. P. (1997), "Marine debris surveys at Bird Island, South Georgia 1990–1995", Marine Pollution Bulletin, 34 (1): 61–65, Bibcode:1997MarPB..34...61W, doi:10.1016/S0025-326X(96)00053-7.
  42. Cowger, Win; Willis, Kathryn A.; Bullock, Sybil; Conlon, Katie; Emmanuel, Jorge; Erdle, Lisa M.; Eriksen, Marcus; Farrelly, Trisia A.; Hardesty, Britta Denise; Kerge, Kristiina; Li, Natalie; Li, Yedan; Liebman, Adam; Tangri, Neil; Thiel, Martin (26 April 2024). "Global producer responsibility for plastic pollution". Science Advances. 10 (17). doi:10.1126/sciadv.adj8275. ISSN 2375-2548. PMC 11042729. PMID 38657069. This article incorporates text from this source, which is available under the CC BY 4.0 license.
  43. Ron Hess; Denis Rushworth; Michael Hynes; John Peters (2 August 2006). "Chapter 5: Reefing" (PDF). Disposal Options for Ships. Rand Corporation. Archived from the original (PDF) on 29 June 2007. Retrieved 3 May 2008.
  44. Miller, Shawn (19 October 2014). "Crabs With Beach Trash Homes – Okinawa, Japan". Okinawa Nature Photography. Archived from the original on 14 October 2017. Retrieved 14 October 2017.
  45. Kenneth R. Weiss (2 August 2006). "Plague of Plastic Chokes the Seas". Los Angeles Times. Archived from the original on 23 September 2008. Retrieved 1 April 2008.
  46. Santos, Robson G.; Machovsky-Capuska, Gabriel E.; Andrades, Ryan (2 July 2021). "Plastic ingestion as an evolutionary trap: Toward a holistic understanding". Science. 373 (6550): 56–60. Bibcode:2021Sci...373...56S. doi:10.1126/science.abh0945. ISSN 0036-8075. PMID 34210877. S2CID 235699697.
  47. Charles Moore (November 2003). "Across the Pacific Ocean, plastics, plastics, everywhere". Natural History. Archived from the original on 25 April 2016. Retrieved 12 July 2016.
  48. Beaumont, Nicola J.; Aanesen, Margrethe; Austen, Melanie C.; Börger, Tobias; Clark, James R.; Cole, Matthew; Hooper, Tara; Lindeque, Penelope K.; Pascoe, Christine; Wyles, Kayleigh J. (1 May 2019). "Global ecological, social and economic impacts of marine plastic". Marine Pollution Bulletin. 142: 189–195. Bibcode:2019MarPB.142..189B. doi:10.1016/j.marpolbul.2019.03.022. hdl:1893/29518. ISSN 0025-326X. PMID 31232294. S2CID 109080453.
  49. Okuku, Eric; Kiteresi, Linet; Owato, Gilbert; Otieno, Kenneth; Mwalugha, Catherine; Mbuche, Mary; Gwada, Brenda; Nelson, Annette; Chepkemboi, Purity; Achieng, Quinter; Wanjeri, Veronica (January 2021). "The impacts of COVID-19 pandemic on marine litter pollution along the Kenyan Coast: A synthesis after 100 days following the first reported case in Kenya". Marine Pollution Bulletin. 162: 111840. Bibcode:2021MarPB.16211840O. doi:10.1016/j.marpolbul.2020.111840. ISSN 0025-326X. PMC 7682337. PMID 33248673.
  50. Patrício Silva, Ana L.; Prata, Joana C.; Walker, Tony R.; Duarte, Armando C.; Ouyang, Wei; Barcelò, Damià; Rocha-Santos, Teresa (1 February 2021). "Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations". Chemical Engineering Journal. 405: 126683. Bibcode:2021ChEnJ.40526683P. doi:10.1016/j.cej.2020.126683. ISSN 1385-8947. PMC 7430241. PMID 32834764.
  51. Leal Filho, Walter; Salvia, Amanda Lange; Minhas, Aprajita; Paço, Arminda; Dias-Ferreira, Celia (1 November 2021). "The COVID-19 pandemic and single-use plastic waste in households: A preliminary study". Science of the Total Environment. 793: 148571. Bibcode:2021ScTEn.79348571L. doi:10.1016/j.scitotenv.2021.148571. ISSN 0048-9697. PMC 8799403. PMID 34175610. S2CID 235660228.
  52. "Debris collection onsite after Bay Bridge struck". US Army Corps of Engineers. Archived from the original on 9 January 2009. Retrieved 7 February 2009.
  53. "Fishing For Litter". FishingForLitter.org.uk.
  54. "Trash Racks". Adelaide and Mount Lofty Ranges Natural Resources Management Board. Archived from the original on 19 July 2008. Retrieved 7 February 2009.
  55. "10 Tips for Divers to Protect the Ocean Planet". Archived from the original on 23 September 2014.
  56. Daily Telegraph 28 September 2017, page 31
  57. "Lost fishing gear being recovered from Scapa Flow – The Orcadian Online". orcadian.co.uk. 25 September 2017. Archived from the original on 11 December 2017. Retrieved 1 May 2018.
  58. Crowley. "Ghost Fishing UK to be Charges for Cleanups". divemagazine.co.uk. Archived from the original on 29 September 2017. Retrieved 1 May 2018.
  59. ^ Province of British Columbia (February 2020). "What We Heard on Marine Debris in B.C." (PDF).
  60. Arrais, Pedro (10 October 2021). "Canadian Coast Guard urges patience as it deals with up to 1,600 derelict boats". Victoria Times Colonist.
  61. Transport Canada (30 October 2017). "Speaking Notes for the Honourable Marc Garneau, Minister of Transport for a News Conference on Bill C-64, The Wrecked Abandoned or Hazardous Vessels Act". Government of Canada.
  62. "One sunken boat pollutes ocean as much as 480,000 plastic straws, non-profit says: Dead Boat Disposal Society one of several groups working with B.C. gov't to find solution to abandoned vessels". CBC News. 31 August 2019.
  63. "Solar powered SeaVax hoover concept to clean up the oceans". The International Institute of Marine Surveying (IIMS). 14 March 2016.
  64. "Solar-Powered Vacuum Could Suck Up 24,000 Tons of Ocean Plastic Every Year". EcoWatch. 19 February 2016.
  65. "Yvan Bourgnon : "Au large, le Manta pourra ramasser 600 m3 de déchets plastiques"". Libération.fr. 23 April 2018.
  66. "Methods for collecting plastic litter at sea". MarineDebris.Info. Archived from the original on 24 October 2013.
  67. "The Great Pacific Garbage Patch". Sierra Club. 6 December 2016.
  68. Poizat, Christophe J. (3 May 2016). "Official Launch of Ocean Phoenix Project". Medium.
  69. Turner, Emily; Steimle, Susie (26 June 2019). "Great Pacific Garbage Patch Cleanup Work Tackled By Sausalito Non-Profit". sanfrancisco.cbslocal.com. Retrieved 23 May 2021.
  70. Michelle Lou (30 June 2019). "Environmentalists removed more than 40 tons of trash from the Pacific – and it barely made a dent". CNN. Retrieved 6 September 2019.
  71. Yerkey, Ryan (24 June 2020). "Record Haul of Trash". Star Advertiser.
  72. "Photos: Sailing Cargo Vessel Recovers 67 Tons of Ocean Plastic". The Maritime Executive.
  73. Mandel, Kyla (5 September 2020). "Don't Call It A Garbage Patch: The Truth About Cleaning Up Ocean Plastics". Retrieved 23 May 2021.
  74. David Helvarg (27 December 2019). "Untangling the Problem of Ocean Plastic". Sierra.
  75. ^ Parker, Laura. "With Millions of Tons of Plastic in Oceans, More Scientists Studying Impact." National Geographic. National Geographic Society, 13 June 2014. Web. 3 April 2016.
  76. Wabnitz, Colette; Nichols, Wallace J. (2010). "Plastic pollution: An ocean emergency". Marine Turtle Newsletter. 129: 1–4.
  77. ^ Leous, Justin P.; Parry, Neal B. (2005). "Who is Responsible for Marine Debris? The International Politics of Cleaning Our Oceans". Journal of International Affairs. 59 (1): 257–269. JSTOR 24358243.
  78. "London Convention". US EPA. Archived from the original on 9 March 2009. Retrieved 29 May 2008.
  79. ^ "Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter". The American Journal of International Law. 67 (3): 626–636. 1973. doi:10.2307/2199200. JSTOR 2199200. S2CID 133725566.
  80. "International Convention for the Prevention of Pollution from Ships (MARPOL)". www.imo.org. Archived from the original on 4 October 2019. Retrieved 23 July 2015.
  81. Tharpes, Yvonne L. (1989). "International Environmental Law: Turning the Tide on Marine Pollution". The University of Miami Inter-American Law Review. 20 (3): 579–614. JSTOR 40176192.
  82. "Beaches, Fishing Grounds and Sea Routes Protection Act 1932". Federal Register of Legislation.
  83. Caroline Ford (2014). Sydney Beaches: A History. NewSouth. p. 230. ISBN 978-1742246840.
  84. "Environment Protection (Sea Dumping) Act 1981". Federal Register of Legislation.
  85. "The OSPAR Convention". OSPAR Commission. Archived from the original on 12 February 2008. Retrieved 29 May 2008.
  86. "Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy". EurLex. Retrieved 29 May 2008.
  87. "Marine and Coastal Access Act 2009". UK Defra. Archived from the original on 2 April 2010. Retrieved 29 July 2008.
  88. "EU parliament approves ban on single use plastics". phys.org.
  89. Craig, R. (2005). "Protecting International Marine Biodiversity: International Treaties and National Systems of Marine Protected Areas". Journal of Land Use & Environmental Law. 20 (2): 333–369. JSTOR 42842976.
  90. "Marine Protection, Research, and Sanctuaries Act of 1972" (PDF). US Senate. 29 December 2000. Archived (PDF) from the original on 30 May 2008. Retrieved 29 May 2008.
  91. "Ocean Dumping Ban Act of 1988". US EPA. 21 November 1988. Archived from the original on 11 May 2009. Retrieved 29 May 2008.
  92. "Can you keep ship-wrecked goods?". BBC News. 22 January 2007. Archived from the original on 23 January 2009. Retrieved 29 May 2008.
  93. "Home". PlasticAdrift.org. Retrieved 3 February 2015.
  94. "The garbage patch territory turns into a new state". UNESCO Office in Venice. United Nations Educational, Scientific and Cultural Organization. 4 November 2013. Archived from the original on 11 September 2017.
  95. "Rifiuti diventano stato, Unesco riconosce 'Garbage Patch'" [Waste becomes state, UNESCO recognizes 'Garbage Patch']. Siti (in Italian). Archived from the original on 14 July 2014. Retrieved 3 November 2014.
  96. Chow, Lorraine (29 June 2016). "80% Of Ocean Plastic Comes From Land-Based Sources, New Report Finds". EcoWatch.
  97. Tibbetts, John H. (April 2015). "Managing Marine Plastic Pollution: Policy Initiatives to Address Wayward Waste". Environmental Health Perspectives. 123 (4): A90-3. doi:10.1289/ehp.123-A90. PMC 4384192. PMID 25830293.
  98. ^ "7 Ways To Reduce Ocean Plastic Pollution Today". www.oceanicsociety.org. Archived from the original on 30 March 2018. Retrieved 29 March 2018.
  99. Stemming the tide: Land-based strategies for a plastic-free ocean (pp. 1–48, Rep.). (2015). McKinsey Center for Business and Environment.
  100. "Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2012" (PDF). EPA.
  101. Nash, Jennifer; Bosso, Christopher (April 2013). "Extended Producer Responsibility in the United States". Journal of Industrial Ecology. 17 (2): 175–185. Bibcode:2013JInEc..17..175N. doi:10.1111/j.1530-9290.2012.00572.x. S2CID 154297251.
  102. "Cigarette butts are toxic plastic pollution. Should they be banned?". Environment. 9 August 2019. Archived from the original on 10 August 2019.

External links

Media related to Marine debris at Wikimedia Commons

Marine pollution
Pollution
History
Air
Biological
Digital
Electromagnetic
Natural
Noise
Radiation
Soil
Solid waste
Space
Visual
War
Water
Topics
Misc
Responses
Lists
Categories (by country) Commons WikiProject Environment WikiProject Ecology icon Environment portal icon Ecology portal
Biosolids, waste, and waste management
Major types
Processes
Countries
Agreements
Occupations
Other topics
Categories:
Marine debris Add topic