Misplaced Pages

N = 2 superconformal algebra

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from N=2 superconformal algebra) 2D supersymmetric generalization to the conformal algebra

In mathematical physics, the 2D N = 2 superconformal algebra is an infinite-dimensional Lie superalgebra, related to supersymmetry, that occurs in string theory and two-dimensional conformal field theory. It has important applications in mirror symmetry. It was introduced by M. Ademollo, L. Brink, and A. D'Adda et al. (1976) as a gauge algebra of the U(1) fermionic string.

Definition

There are two slightly different ways to describe the N = 2 superconformal algebra, called the N = 2 Ramond algebra and the N = 2 Neveu–Schwarz algebra, which are isomorphic (see below) but differ in the choice of standard basis. The N = 2 superconformal algebra is the Lie superalgebra with basis of even elements c, Ln, Jn, for n an integer, and odd elements G
r, G
r, where r Z {\displaystyle r\in {\mathbb {Z} }} (for the Ramond basis) or r 1 2 + Z {\textstyle r\in {1 \over 2}+{\mathbb {Z} }} (for the Neveu–Schwarz basis) defined by the following relations:

c is in the center
[ L m , L n ] = ( m n ) L m + n + c 12 ( m 3 m ) δ m + n , 0 {\displaystyle =\left(m-n\right)L_{m+n}+{c \over 12}\left(m^{3}-m\right)\delta _{m+n,0}}
[ L m , J n ] = n J m + n {\displaystyle =-nJ_{m+n}}
[ J m , J n ] = c 3 m δ m + n , 0 {\displaystyle ={c \over 3}m\delta _{m+n,0}}
{ G r + , G s } = L r + s + 1 2 ( r s ) J r + s + c 6 ( r 2 1 4 ) δ r + s , 0 {\displaystyle \{G_{r}^{+},G_{s}^{-}\}=L_{r+s}+{1 \over 2}\left(r-s\right)J_{r+s}+{c \over 6}\left(r^{2}-{1 \over 4}\right)\delta _{r+s,0}}
{ G r + , G s + } = 0 = { G r , G s } {\displaystyle \{G_{r}^{+},G_{s}^{+}\}=0=\{G_{r}^{-},G_{s}^{-}\}}
[ L m , G r ± ] = ( m 2 r ) G r + m ± {\displaystyle =\left({m \over 2}-r\right)G_{r+m}^{\pm }}
[ J m , G r ± ] = ± G m + r ± {\displaystyle =\pm G_{m+r}^{\pm }}

If r , s Z {\displaystyle r,s\in {\mathbb {Z} }} in these relations, this yields the N = 2 Ramond algebra; while if r , s 1 2 + Z {\textstyle r,s\in {1 \over 2}+{\mathbb {Z} }} are half-integers, it gives the N = 2 Neveu–Schwarz algebra. The operators L n {\displaystyle L_{n}} generate a Lie subalgebra isomorphic to the Virasoro algebra. Together with the operators G r = G r + + G r {\displaystyle G_{r}=G_{r}^{+}+G_{r}^{-}} , they generate a Lie superalgebra isomorphic to the super Virasoro algebra, giving the Ramond algebra if r , s {\displaystyle r,s} are integers and the Neveu–Schwarz algebra otherwise. When represented as operators on a complex inner product space, c {\displaystyle c} is taken to act as multiplication by a real scalar, denoted by the same letter and called the central charge, and the adjoint structure is as follows:

L n = L n , J m = J m , ( G r ± ) = G r , c = c {\displaystyle {L_{n}^{*}=L_{-n},\,\,J_{m}^{*}=J_{-m},\,\,(G_{r}^{\pm })^{*}=G_{-r}^{\mp },\,\,c^{*}=c}}

Properties

  • The N = 2 Ramond and Neveu–Schwarz algebras are isomorphic by the spectral shift isomorphism α {\displaystyle \alpha } of Schwimmer & Seiberg (1987): α ( L n ) = L n + 1 2 J n + c 24 δ n , 0 {\displaystyle \alpha (L_{n})=L_{n}+{1 \over 2}J_{n}+{c \over 24}\delta _{n,0}} α ( J n ) = J n + c 6 δ n , 0 {\displaystyle \alpha (J_{n})=J_{n}+{c \over 6}\delta _{n,0}} α ( G r ± ) = G r ± 1 2 ± {\displaystyle \alpha (G_{r}^{\pm })=G_{r\pm {1 \over 2}}^{\pm }} with inverse: α 1 ( L n ) = L n 1 2 J n + c 24 δ n , 0 {\displaystyle \alpha ^{-1}(L_{n})=L_{n}-{1 \over 2}J_{n}+{c \over 24}\delta _{n,0}} α 1 ( J n ) = J n c 6 δ n , 0 {\displaystyle \alpha ^{-1}(J_{n})=J_{n}-{c \over 6}\delta _{n,0}} α 1 ( G r ± ) = G r 1 2 ± {\displaystyle \alpha ^{-1}(G_{r}^{\pm })=G_{r\mp {1 \over 2}}^{\pm }}
  • In the N = 2 Ramond algebra, the zero mode operators L 0 {\displaystyle L_{0}} , J 0 {\displaystyle J_{0}} , G 0 ± {\displaystyle G_{0}^{\pm }} and the constants form a five-dimensional Lie superalgebra. They satisfy the same relations as the fundamental operators in Kähler geometry, with L 0 {\displaystyle L_{0}} corresponding to the Laplacian, J 0 {\displaystyle J_{0}} the degree operator, and G 0 ± {\displaystyle G_{0}^{\pm }} the {\displaystyle \partial } and ¯ {\displaystyle {\overline {\partial }}} operators.
  • Even integer powers of the spectral shift give automorphisms of the N = 2 superconformal algebras, called spectral shift automorphisms. Another automorphism β {\displaystyle \beta } , of period two, is given by β ( L m ) = L m , {\displaystyle \beta (L_{m})=L_{m},} β ( J m ) = J m c 3 δ m , 0 , {\displaystyle \beta (J_{m})=-J_{m}-{c \over 3}\delta _{m,0},} β ( G r ± ) = G r {\displaystyle \beta (G_{r}^{\pm })=G_{r}^{\mp }} In terms of Kähler operators, β {\displaystyle \beta } corresponds to conjugating the complex structure. Since β α β 1 = α 1 {\displaystyle \beta \alpha \beta ^{-1}=\alpha ^{-1}} , the automorphisms α 2 {\displaystyle \alpha ^{2}} and β {\displaystyle \beta } generate a group of automorphisms of the N = 2 superconformal algebra isomorphic to the infinite dihedral group Z Z 2 {\displaystyle {\mathbb {Z} }\rtimes {\mathbb {Z} }_{2}} .
  • Twisted operators L n = L n + 1 2 ( n + 1 ) J n {\textstyle {\mathcal {L}}_{n}=L_{n}+{1 \over 2}(n+1)J_{n}} were introduced by Eguchi & Yang (1990) and satisfy: [ L m , L n ] = ( m n ) L m + n {\displaystyle =(m-n){\mathcal {L}}_{m+n}} so that these operators satisfy the Virasoro relation with central charge 0. The constant c {\displaystyle c} still appears in the relations for J m {\displaystyle J_{m}} and the modified relations [ L m , J n ] = n J m + n + c 6 ( m 2 + m ) δ m + n , 0 {\displaystyle =-nJ_{m+n}+{c \over 6}\left(m^{2}+m\right)\delta _{m+n,0}} { G r + , G s } = 2 L r + s 2 s J r + s + c 3 ( m 2 + m ) δ m + n , 0 {\displaystyle \{G_{r}^{+},G_{s}^{-}\}=2{\mathcal {L}}_{r+s}-2sJ_{r+s}+{c \over 3}\left(m^{2}+m\right)\delta _{m+n,0}}

Constructions

Free field construction

Green, Schwarz, and Witten (1988a, 1988b) give a construction using two commuting real bosonic fields ( a n ) {\displaystyle (a_{n})} , ( b n ) {\displaystyle (b_{n})}

[ a m , a n ] = m 2 δ m + n , 0 , [ b m , b n ] = m 2 δ m + n , 0 , a n = a n , b n = b n {\displaystyle {={m \over 2}\delta _{m+n,0},\,\,\,\,={m \over 2}\delta _{m+n,0}},\,\,\,\,a_{n}^{*}=a_{-n},\,\,\,\,b_{n}^{*}=b_{-n}}

and a complex fermionic field ( e r ) {\displaystyle (e_{r})}

{ e r , e s } = δ r , s , { e r , e s } = 0. {\displaystyle \{e_{r},e_{s}^{*}\}=\delta _{r,s},\,\,\,\,\{e_{r},e_{s}\}=0.}

L n {\displaystyle L_{n}} is defined to the sum of the Virasoro operators naturally associated with each of the three systems

L n = m : a m + n a m : + m : b m + n b m : + r ( r + n 2 ) : e r e n + r : {\displaystyle L_{n}=\sum _{m}:a_{-m+n}a_{m}:+\sum _{m}:b_{-m+n}b_{m}:+\sum _{r}\left(r+{n \over 2}\right):e_{r}^{*}e_{n+r}:}

where normal ordering has been used for bosons and fermions.

The current operator J n {\displaystyle J_{n}} is defined by the standard construction from fermions

J n = r : e r e n + r : {\displaystyle J_{n}=\sum _{r}:e_{r}^{*}e_{n+r}:}

and the two supersymmetric operators G r ± {\displaystyle G_{r}^{\pm }} by

G r + = ( a m + i b m ) e r + m , G r = ( a r + m i b r + m ) e m {\displaystyle G_{r}^{+}=\sum (a_{-m}+ib_{-m})\cdot e_{r+m},\,\,\,\,G_{r}^{-}=\sum (a_{r+m}-ib_{r+m})\cdot e_{m}^{*}}

This yields an N = 2 Neveu–Schwarz algebra with c = 3.

SU(2) supersymmetric coset construction

Di Vecchia et al. (1986) gave a coset construction of the N = 2 superconformal algebras, generalizing the coset constructions of Goddard, Kent & Olive (1986) for the discrete series representations of the Virasoro and super Virasoro algebra. Given a representation of the affine Kac–Moody algebra of SU(2) at level {\displaystyle \ell } with basis E n , F n , H n {\displaystyle E_{n},F_{n},H_{n}} satisfying

[ H m , H n ] = 2 m δ n + m , 0 , {\displaystyle =2m\ell \delta _{n+m,0},}
[ E m , F n ] = H m + n + m δ m + n , 0 , {\displaystyle =H_{m+n}+m\ell \delta _{m+n,0},}
[ H m , E n ] = 2 E m + n , {\displaystyle =2E_{m+n},}
[ H m , F n ] = 2 F m + n , {\displaystyle =-2F_{m+n},}

the supersymmetric generators are defined by

G r + = ( / 2 + 1 ) 1 / 2 E m e m + r , G r = ( / 2 + 1 ) 1 / 2 F r + m e m . {\displaystyle G_{r}^{+}=(\ell /2+1)^{-1/2}\sum E_{-m}\cdot e_{m+r},\,\,\,G_{r}^{-}=(\ell /2+1)^{-1/2}\sum F_{r+m}\cdot e_{m}^{*}.}

This yields the N=2 superconformal algebra with

c = 3 / ( + 2 ) . {\displaystyle c=3\ell /(\ell +2).}

The algebra commutes with the bosonic operators

X n = H n 2 r : e r e n + r : . {\displaystyle X_{n}=H_{n}-2\sum _{r}:e_{r}^{*}e_{n+r}:.}

The space of physical states consists of eigenvectors of X 0 {\displaystyle X_{0}} simultaneously annihilated by the X n {\displaystyle X_{n}} 's for positive n {\displaystyle n} and the supercharge operator

Q = G 1 / 2 + + G 1 / 2 {\displaystyle Q=G_{1/2}^{+}+G_{-1/2}^{-}} (Neveu–Schwarz)
Q = G 0 + + G 0 . {\displaystyle Q=G_{0}^{+}+G_{0}^{-}.} (Ramond)

The supercharge operator commutes with the action of the affine Weyl group and the physical states lie in a single orbit of this group, a fact which implies the Weyl-Kac character formula.

Kazama–Suzuki supersymmetric coset construction

Kazama & Suzuki (1989) generalized the SU(2) coset construction to any pair consisting of a simple compact Lie group G {\displaystyle G} and a closed subgroup H {\displaystyle H} of maximal rank, i.e. containing a maximal torus T {\displaystyle T} of G {\displaystyle G} , with the additional condition that the dimension of the centre of H {\displaystyle H} is non-zero. In this case the compact Hermitian symmetric space G / H {\displaystyle G/H} is a Kähler manifold, for example when H = T {\displaystyle H=T} . The physical states lie in a single orbit of the affine Weyl group, which again implies the Weyl–Kac character formula for the affine Kac–Moody algebra of G {\displaystyle G} .

See also

Notes

  1. Green, Schwarz & Witten 1988a, pp. 240–241
  2. ^ Wassermann 2010

References

Categories:
N = 2 superconformal algebra Add topic