Misplaced Pages

n-ellipse

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Multifocal ellipse) Generalization of the ellipse to allow more than two foci
Examples of 3-ellipses for three given foci. The progression of the distances is not linear.

In geometry, the n-ellipse is a generalization of the ellipse allowing more than two foci. n-ellipses go by numerous other names, including multifocal ellipse, polyellipse, egglipse, k-ellipse, and Tschirnhaus'sche Eikurve (after Ehrenfried Walther von Tschirnhaus). They were first investigated by James Clerk Maxwell in 1846.

Given n focal points (ui, vi) in a plane, an n-ellipse is the locus of points of the plane whose sum of distances to the n foci is a constant d. In formulas, this is the set

{ ( x , y ) R 2 : i = 1 n ( x u i ) 2 + ( y v i ) 2 = d } . {\displaystyle \left\{(x,y)\in \mathbf {R} ^{2}:\sum _{i=1}^{n}{\sqrt {(x-u_{i})^{2}+(y-v_{i})^{2}}}=d\right\}.}

The 1-ellipse is the circle, and the 2-ellipse is the classic ellipse. Both are algebraic curves of degree 2.

For any number n of foci, the n-ellipse is a closed, convex curve. The curve is smooth unless it goes through a focus.

The n-ellipse is in general a subset of the points satisfying a particular algebraic equation. If n is odd, the algebraic degree of the curve is 2 n {\displaystyle 2^{n}} , while if n is even the degree is 2 n ( n n / 2 ) . {\displaystyle 2^{n}-{\binom {n}{n/2}}.}

n-ellipses are special cases of spectrahedra.

See also

References

  1. J. Sekino (1999): "n-Ellipses and the Minimum Distance Sum Problem", American Mathematical Monthly 106 #3 (March 1999), 193–202. MR1682340; Zbl 986.51040.
  2. ^ Erdős, Paul; Vincze, István (1982). "On the Approximation of Convex, Closed Plane Curves by Multifocal Ellipses" (PDF). Journal of Applied Probability. 19: 89–96. doi:10.2307/3213552. JSTOR 3213552. S2CID 17166889. Archived from the original (PDF) on 28 September 2016. Retrieved 22 February 2015.
  3. Z.A. Melzak and J.S. Forsyth (1977): "Polyconics 1. polyellipses and optimization", Q. of Appl. Math., pages 239–255, 1977.
  4. P.V. Sahadevan (1987): "The theory of egglipse—a new curve with three focal points", International Journal of Mathematical Education in Science and Technology 18 (1987), 29–39. MR872599; Zbl 613.51030.
  5. ^ J. Nie, P.A. Parrilo, B. Sturmfels: "J. Nie, P. Parrilo, B.St.: "Semidefinite representation of the k-ellipse", in Algorithms in Algebraic Geometry, I.M.A. Volumes in Mathematics and its Applications, 146, Springer, New York, 2008, pp. 117-132
  6. James Clerk Maxwell (1846): "Paper on the Description of Oval Curves, Feb 1846, from The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862

Further reading

Categories: