Misplaced Pages

Local criterion for flatness

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Miracle flatness theorem)

In algebra, the local criterion for flatness gives conditions one can check to show flatness of a module.

Statement

Given a commutative ring A, an ideal I and an A-module M, suppose either

  • A is a Noetherian ring and M is idealwise separated for I: for every ideal a {\displaystyle {\mathfrak {a}}} , n 1 I n ( a M ) = 0 {\displaystyle \bigcap _{n\geq 1}I^{n}({\mathfrak {a}}\otimes M)=0} (for example, this is the case when A is a Noetherian local ring, I its maximal ideal and M finitely generated),

or

Then the following are equivalent:

  1. M is a flat module.
  2. M / I {\displaystyle M/I} is flat over A / I {\displaystyle A/I} and Tor 1 A ( A / I , M ) = 0 {\displaystyle \operatorname {Tor} _{1}^{A}(A/I,M)=0} .
  3. For each n 0 {\displaystyle n\geq 0} , M n = M / I n + 1 M {\displaystyle M_{n}=M/I^{n+1}M} is flat over A n = A / I n + 1 {\displaystyle A_{n}=A/I^{n+1}} .
  4. In the notations of 3., M 0 {\displaystyle M_{0}} is A 0 {\displaystyle A_{0}} -flat and the natural gr I A {\displaystyle \operatorname {gr} _{I}A} -module surjection
    gr I A A 0 M 0 gr I M {\displaystyle \operatorname {gr} _{I}A\otimes _{A_{0}}M_{0}\to \operatorname {gr} _{I}M}
    is an isomorphism; i.e., each I n / I n + 1 A 0 M 0 I n M / I n + 1 M {\displaystyle I^{n}/I^{n+1}\otimes _{A_{0}}M_{0}\to I^{n}M/I^{n+1}M} is an isomorphism.

The assumption that “A is a Noetherian ring” is used to invoke the Artin–Rees lemma and can be weakened; see

Proof

Following SGA 1, Exposé IV, we first prove a few lemmas, which are interesting themselves. (See also this blog post by Akhil Mathew for a proof of a special case.)

Lemma 1 — Given a ring homomorphism A B {\displaystyle A\to B} and an A {\displaystyle A} -module M {\displaystyle M} , the following are equivalent.

  1. For every B {\displaystyle B} -module X {\displaystyle X} , Tor 1 A ( X , M ) = 0. {\displaystyle \operatorname {Tor} _{1}^{A}(X,M)=0.}
  2. M A B {\displaystyle M\otimes _{A}B} is B {\displaystyle B} -flat and Tor 1 A ( B , M ) = 0. {\displaystyle \operatorname {Tor} _{1}^{A}(B,M)=0.}

Moreover, if B = A / I {\displaystyle B=A/I} , the above two are equivalent to

  1. Tor 1 A ( X , M ) = 0 {\displaystyle \operatorname {Tor} _{1}^{A}(X,M)=0} for every A {\displaystyle A} -module X {\displaystyle X} killed by some power of I {\displaystyle I} .

Proof: The equivalence of the first two can be seen by studying the Tor spectral sequence. Here is a direct proof: if 1. is valid and N N {\displaystyle N\hookrightarrow N'} is an injection of B {\displaystyle B} -modules with cokernel C, then, as A-modules,

Tor 1 A ( C , M ) = 0 N A M N A M {\displaystyle \operatorname {Tor} _{1}^{A}(C,M)=0\to N\otimes _{A}M\to N'\otimes _{A}M} .

Since N A M N B ( B A N ) {\displaystyle N\otimes _{A}M\simeq N\otimes _{B}(B\otimes _{A}N)} and the same for N {\displaystyle N'} , this proves 2. Conversely, considering 0 R F X 0 {\displaystyle 0\to R\to F\to X\to 0} where F is B-free, we get:

Tor 1 A ( F , M ) = 0 Tor 1 A ( X , M ) R A M F A M {\displaystyle \operatorname {Tor} _{1}^{A}(F,M)=0\to \operatorname {Tor} _{1}^{A}(X,M)\to R\otimes _{A}M\to F\otimes _{A}M} .

Here, the last map is injective by flatness and that gives us 1. To see the "Moreover" part, if 1. is valid, then Tor 1 A ( I n X / I n + 1 X , M ) = 0 {\displaystyle \operatorname {Tor} _{1}^{A}(I^{n}X/I^{n+1}X,M)=0} and so

Tor 1 A ( I n + 1 X , M ) Tor 1 A ( I n X , M ) 0. {\displaystyle \operatorname {Tor} _{1}^{A}(I^{n+1}X,M)\to \operatorname {Tor} _{1}^{A}(I^{n}X,M)\to 0.}

By descending induction, this implies 3. The converse is trivial. {\displaystyle \square }

Lemma 2 — Let A {\displaystyle A} be a ring and M {\displaystyle M} a module over it. If Tor 1 A ( A / I n , M ) = 0 {\displaystyle \operatorname {Tor} _{1}^{A}(A/I^{n},M)=0} for every n > 0 {\displaystyle n>0} , then the natural grade-preserving surjection

gr I ( A ) A 0 M 0 gr I M {\displaystyle \operatorname {gr} _{I}(A)\otimes _{A_{0}}M_{0}\to \operatorname {gr} _{I}M}

is an isomorphism. Moreover, when I is nilpotent,

M {\displaystyle M} is flat if and only if M 0 {\displaystyle M_{0}} is flat over A 0 {\displaystyle A_{0}} and gr I A A 0 M 0 gr I M {\displaystyle \operatorname {gr} _{I}A\otimes _{A_{0}}M_{0}\to \operatorname {gr} _{I}M} is an isomorphism.

Proof: The assumption implies that I n M = I n M {\displaystyle I^{n}\otimes M=I^{n}M} and so, since tensor product commutes with base extension,

gr I ( A ) A 0 M 0 = 0 ( I n ) 0 A 0 M 0 = 0 ( I n A M ) 0 = 0 ( I n M ) 0 = gr I M {\displaystyle \operatorname {gr} _{I}(A)\otimes _{A_{0}}M_{0}=\oplus _{0}^{\infty }(I^{n})_{0}\otimes _{A_{0}}M_{0}=\oplus _{0}^{\infty }(I^{n}\otimes _{A}M)_{0}=\oplus _{0}^{\infty }(I^{n}M)_{0}=\operatorname {gr} _{I}M} .

For the second part, let α i {\displaystyle \alpha _{i}} denote the exact sequence 0 Tor 1 A ( A / I i , M ) I i M I i M 0 {\displaystyle 0\to \operatorname {Tor} _{1}^{A}(A/I^{i},M)\to I^{i}\otimes M\to I^{i}M\to 0} and γ i : 0 0 I i / I i + 1 M I i M / I i + 1 M 0 {\displaystyle \gamma _{i}:0\to 0\to I^{i}/I^{i+1}\otimes M{\overset {\simeq }{\to }}I^{i}M/I^{i+1}M\to 0} . Consider the exact sequence of complexes:

α i + 1 α i γ i . {\displaystyle \alpha _{i+1}\to \alpha _{i}\to \gamma _{i}.}

Then Tor 1 A ( A / I i , M ) = 0 , i > 0 {\displaystyle \operatorname {Tor} _{1}^{A}(A/I^{i},M)=0,i>0} (it is so for large i {\displaystyle i} and then use descending induction). 3. of Lemma 1 then implies that M {\displaystyle M} is flat. {\displaystyle \square }

Proof of the main statement.

2. 1. {\displaystyle 2.\Rightarrow 1.} : If I {\displaystyle I} is nilpotent, then, by Lemma 1, Tor 1 A ( , M ) = 0 {\displaystyle \operatorname {Tor} _{1}^{A}(-,M)=0} and M {\displaystyle M} is flat over A {\displaystyle A} . Thus, assume that the first assumption is valid. Let a A {\displaystyle {\mathfrak {a}}\subset A} be an ideal and we shall show a M M {\displaystyle {\mathfrak {a}}\otimes M\to M} is injective. For an integer k > 0 {\displaystyle k>0} , consider the exact sequence

0 a / ( I k a ) A / I k A / ( a + I k ) 0. {\displaystyle 0\to {\mathfrak {a}}/(I^{k}\cap {\mathfrak {a}})\to A/I^{k}\to A/({\mathfrak {a}}+I^{k})\to 0.}

Since Tor 1 A ( A / ( a + I k ) , M ) = 0 {\displaystyle \operatorname {Tor} _{1}^{A}(A/({\mathfrak {a}}+I^{k}),M)=0} by Lemma 1 (note I k {\displaystyle I^{k}} kills A / ( a + I k ) {\displaystyle A/({\mathfrak {a}}+I^{k})} ), tensoring the above with M {\displaystyle M} , we get:

0 a / ( I k a ) M A / I k M = M / I k M {\displaystyle 0\to {\mathfrak {a}}/(I^{k}\cap {\mathfrak {a}})\otimes M\to A/I^{k}\otimes M=M/I^{k}M} .

Tensoring M {\displaystyle M} with 0 I k a a a / ( I k a ) 0 {\displaystyle 0\to I^{k}\cap {\mathfrak {a}}\to {\mathfrak {a}}\to {\mathfrak {a}}/(I^{k}\cap {\mathfrak {a}})\to 0} , we also have:

( I k a ) M f a M g a / ( I k a ) M 0. {\displaystyle (I^{k}\cap {\mathfrak {a}})\otimes M{\overset {f}{\to }}{\mathfrak {a}}\otimes M{\overset {g}{\to }}{\mathfrak {a}}/(I^{k}\cap {\mathfrak {a}})\otimes M\to 0.}

We combine the two to get the exact sequence:

( I k a ) M f a M g M / I k M . {\displaystyle (I^{k}\cap {\mathfrak {a}})\otimes M{\overset {f}{\to }}{\mathfrak {a}}\otimes M{\overset {g'}{\to }}M/I^{k}M.}

Now, if x {\displaystyle x} is in the kernel of a M M {\displaystyle {\mathfrak {a}}\otimes M\to M} , then, a fortiori, x {\displaystyle x} is in ker ( g ) = im ( f ) = ( I k a ) M {\displaystyle \operatorname {ker} (g')=\operatorname {im} (f)=(I^{k}\cap {\mathfrak {a}})\otimes M} . By the Artin–Rees lemma, given n > 0 {\displaystyle n>0} , we can find k > 0 {\displaystyle k>0} such that I k a I n a {\displaystyle I^{k}\cap {\mathfrak {a}}\subset I^{n}{\mathfrak {a}}} . Since n 1 I n ( a M ) = 0 {\displaystyle \cap _{n\geq 1}I^{n}({\mathfrak {a}}\otimes M)=0} , we conclude x = 0 {\displaystyle x=0} .

1. 4. {\displaystyle 1.\Rightarrow 4.} follows from Lemma 2.

4. 3. {\displaystyle 4.\Rightarrow 3.} : Since ( A n ) 0 = A 0 {\displaystyle (A_{n})_{0}=A_{0}} , the condition 4. is still valid with M , A {\displaystyle M,A} replaced by M n , A n {\displaystyle M_{n},A_{n}} . Then Lemma 2 says that M n {\displaystyle M_{n}} is flat over A n {\displaystyle A_{n}} .

3. 2. {\displaystyle 3.\Rightarrow 2.} Tensoring 0 I A A / I 0 {\displaystyle 0\to I\to A\to A/I\to 0} with M, we see Tor 1 A ( A / I , M ) {\displaystyle \operatorname {Tor} _{1}^{A}(A/I,M)} is the kernel of I M M {\displaystyle I\otimes M\to M} . Thus, the implication is established by an argument similar to that of 2. 1. {\displaystyle 2.\Rightarrow 1.} {\displaystyle \square }

Application: characterization of an étale morphism

The local criterion can be used to prove the following:

Proposition — Given a morphism f : X Y {\displaystyle f:X\to Y} of finite type between Noetherian schemes, f {\displaystyle f} is étale (flat and unramified) if and only if for each x in X, f is an analytically local isomorphism near x; i.e., with y = f ( x ) {\displaystyle y=f(x)} , f x ^ : O y , Y ^ O x , X ^ {\displaystyle {\widehat {f_{x}^{*}}}:{\widehat {{\mathcal {O}}_{y,Y}}}\to {\widehat {{\mathcal {O}}_{x,X}}}} is an isomorphism.

Proof: Assume that O y , Y ^ O x , X ^ {\displaystyle {\widehat {{\mathcal {O}}_{y,Y}}}\to {\widehat {{\mathcal {O}}_{x,X}}}} is an isomorphism and we show f is étale. First, since O x O x ^ {\displaystyle {\mathcal {O}}_{x}\to {\widehat {{\mathcal {O}}_{x}}}} is faithfully flat (in particular is a pure subring), we have:

m y O x = m y O x ^ O x = m y ^ O x ^ O x = m x ^ O x = m x {\displaystyle {\mathfrak {m}}_{y}{\mathcal {O}}_{x}={\mathfrak {m}}_{y}{\widehat {{\mathcal {O}}_{x}}}\cap {\mathcal {O}}_{x}={\widehat {{\mathfrak {m}}_{y}}}{\widehat {{\mathcal {O}}_{x}}}\cap {\mathcal {O}}_{x}={\widehat {{\mathfrak {m}}_{x}}}\cap {\mathcal {O}}_{x}={\mathfrak {m}}_{x}} .

Hence, f {\displaystyle f} is unramified (separability is trivial). Now, that O y O x {\displaystyle {\mathcal {O}}_{y}\to {\mathcal {O}}_{x}} is flat follows from (1) the assumption that the induced map on completion is flat and (2) the fact that flatness descends under faithfully flat base change (it shouldn’t be hard to make sense of (2)).

Next, we show the converse: by the local criterion, for each n, the natural map m y n / m y n + 1 m x n / m x n + 1 {\displaystyle {\mathfrak {m}}_{y}^{n}/{\mathfrak {m}}_{y}^{n+1}\to {\mathfrak {m}}_{x}^{n}/{\mathfrak {m}}_{x}^{n+1}} is an isomorphism. By induction and the five lemma, this implies O y / m y n O x / m x n {\displaystyle {\mathcal {O}}_{y}/{\mathfrak {m}}_{y}^{n}\to {\mathcal {O}}_{x}/{\mathfrak {m}}_{x}^{n}} is an isomorphism for each n. Passing to limit, we get the asserted isomorphism. {\displaystyle \square }

Mumford’s Red Book gives an extrinsic proof of the above fact (Ch. III, § 5, Theorem 3).

Miracle flatness theorem

B. Conrad calls the next theorem the miracle flatness theorem.

Theorem — Let R S {\displaystyle R\to S} be a local ring homomorphism between local Noetherian rings. If S is flat over R, then

dim S = dim R + dim S / m R S {\displaystyle \dim S=\dim R+\dim S/{\mathfrak {m}}_{R}S} .

Conversely, if this dimension equality holds, if R is regular and if S is Cohen–Macaulay (e.g., regular), then S is flat over R.

Notes

  1. Matsumura 1989, Ch. 8, § 22.
  2. Matsumura 1989, Theorem 22.3.
  3. Fujiwara, Gabber & Kato 2011, Proposition 2.2.1.
  4. Problem 10 in http://math.stanford.edu/~conrad/papers/gpschemehw1.pdf

References

External links

Categories:
Local criterion for flatness Add topic