Misplaced Pages

Lommel function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Lommel functions)

The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:

z 2 d 2 y d z 2 + z d y d z + ( z 2 ν 2 ) y = z μ + 1 . {\displaystyle z^{2}{\frac {d^{2}y}{dz^{2}}}+z{\frac {dy}{dz}}+(z^{2}-\nu ^{2})y=z^{\mu +1}.}

Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),

s μ , ν ( z ) = π 2 [ Y ν ( z ) 0 z x μ J ν ( x ) d x J ν ( z ) 0 z x μ Y ν ( x ) d x ] , {\displaystyle s_{\mu ,\nu }(z)={\frac {\pi }{2}}\left,}
S μ , ν ( z ) = s μ , ν ( z ) + 2 μ 1 Γ ( μ + ν + 1 2 ) Γ ( μ ν + 1 2 ) ( sin [ ( μ ν ) π 2 ] J ν ( z ) cos [ ( μ ν ) π 2 ] Y ν ( z ) ) , {\displaystyle S_{\mu ,\nu }(z)=s_{\mu ,\nu }(z)+2^{\mu -1}\Gamma \left({\frac {\mu +\nu +1}{2}}\right)\Gamma \left({\frac {\mu -\nu +1}{2}}\right)\left(\sin \leftJ_{\nu }(z)-\cos \leftY_{\nu }(z)\right),}

where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.

The s function can also be written as

s μ , ν ( z ) = z μ + 1 ( μ ν + 1 ) ( μ + ν + 1 ) 1 F 2 ( 1 ; μ 2 ν 2 + 3 2 , μ 2 + ν 2 + 3 2 ; z 2 4 ) , {\displaystyle s_{\mu ,\nu }(z)={\frac {z^{\mu +1}}{(\mu -\nu +1)(\mu +\nu +1)}}{}_{1}F_{2}(1;{\frac {\mu }{2}}-{\frac {\nu }{2}}+{\frac {3}{2}},{\frac {\mu }{2}}+{\frac {\nu }{2}}+{\frac {3}{2}};-{\frac {z^{2}}{4}}),}

where pFq is a generalized hypergeometric function.

See also

References

  1. Watson's "Treatise on the Theory of Bessel functions" (1966), Section 10.7, Equation (10)

External links

Categories:
Lommel function Add topic