__ Li __ Ta __ O | |
Names | |
---|---|
IUPAC name Lithium tantalate | |
Other names Lithium metatantalate | |
Identifiers | |
CAS Number | |
ECHA InfoCard | 100.031.584 |
PubChem CID | |
RTECS number |
|
CompTox Dashboard (EPA) | |
Properties | |
Chemical formula | LiTaO3 |
Molar mass | 235.887 g/mol |
Density | 7.46 g/cm, solid |
Melting point | 1,650 °C (3,000 °F; 1,920 K) |
Solubility in water | Insoluble in water |
Structure | |
Crystal structure | Space group R3c |
Lattice constant | a = 515.43 pm, c = 1378.35 pm |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards | Acute Toxicity: Oral, Inhalation, Dermal |
Safety data sheet (SDS) | http://www.samaterials.com/pdf/Lithium-Tantalate-Wafers-(LiTaO3-Wafers)-sds.pdf |
Related compounds | |
Other anions | LiNbO3 |
Supplementary data page | |
Lithium tantalate (data page) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Lithium tantalate is the inorganic compound with the formula LiTaO3. It is a white, diamagnetic, water-insoluble solid. The compound has the perovskite structure. It has optical, piezoelectric, and pyroelectric properties. Considerable information is available from commercial sources about this material.
Synthesis and processing
Lithium tantalate is produced by treating tantalum(V) oxide with lithium oxide. The use of excess alkali gives water-soluble polyoxotantalates. Single crystals of Lithium tantalate are pulled from the melt using the Czochralski method.
Applications
Lithium tantalate is used for nonlinear optics, passive infrared sensors such as motion detectors, terahertz generation and detection, surface acoustic wave applications, cell phones. Lithium tantalate is a standard detector element in infrared spectrophotometers.
Research
The phenomenon of pyroelectric fusion has been demonstrated using a lithium tantalate crystal producing a large enough charge to generate and accelerate a beam of deuterium nuclei into a deuterated target resulting in the production of a small flux of helium-3 and neutrons through nuclear fusion without extreme heat or pressure.
A difference between positively and negatively charged parts of pyroelectric LiTaO3 crystals was observed when water freezes to them.
See also
References
- Abrahams, S.C; Bernstein, J.L (1967). "Ferroelectric lithium tantalate—1. Single crystal X-ray diffraction study at 24°C". Journal of Physics and Chemistry of Solids. 28 (9): 1685. Bibcode:1967JPCS...28.1685A. doi:10.1016/0022-3697(67)90142-4.
- ^ Andersson, Klaus; Reichert, Karlheinz; Wolf, Rüdiger (2000). "Tantalum and Tantalum Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a26_071. ISBN 3-527-30673-0.
- "Application note: Infrared Spectroscopy" (PDF).
- B. Naranjo, J.K. Gimzewski & S. Putterman (2005). "Observation of nuclear fusion driven by a pyroelectric crystal". Nature. 434 (7037): 1115–1117. Bibcode:2005Natur.434.1115N. doi:10.1038/nature03575. PMID 15858570. S2CID 4407334.
- D. Ehre; E. Lavert; M. Lahav; I. Lubomirsky (2010). "Water Freezes Differently on Positively and Negatively Charged Surfaces of Pyroelectric Materials". Science. 327 (5966): 672–675. Bibcode:2010Sci...327..672E. doi:10.1126/science.1178085. PMID 20133568. S2CID 206522004.
Tantalum compounds | |||
---|---|---|---|
Tantalum(II) | |||
Tantalum(III) |
| ||
Tantalum(IV) | |||
Tantalum(V) |
|
This inorganic compound–related article is a stub. You can help Misplaced Pages by expanding it. |
This crystallography-related article is a stub. You can help Misplaced Pages by expanding it. |