Misplaced Pages

Krawtchouk matrices

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, Krawtchouk matrices are matrices whose entries are values of Krawtchouk polynomials at nonnegative integer points. The Krawtchouk matrix K is an (N + 1) × (N + 1) matrix. The first few Krawtchouk matrices are:

K ( 0 ) = [ 1 ] , K ( 1 ) = [ 1 1 1 1 ] , K ( 2 ) = [ 1 1 1 2 0 2 1 1 1 ] , K ( 3 ) = [ 1 1 1 1 3 1 1 3 3 1 1 3 1 1 1 1 ] , {\displaystyle K^{(0)}={\begin{bmatrix}1\end{bmatrix}},\qquad K^{(1)}=\left,\qquad K^{(2)}=\left,\qquad K^{(3)}=\left,}
K ( 4 ) = [ 1 1 1 1 1 4 2 0 2 4 6 0 2 0 6 4 2 0 2 4 1 1 1 1 1 ] , K ( 5 ) = [ 1 1 1 1 1 1 5 3 1 1 3 5 10 2 2 2 2 10 10 2 2 2 2 10 5 3 1 1 3 5 1 1 1 1 1 1 ] . {\displaystyle K^{(4)}=\left,\qquad K^{(5)}=\left.}

Definition

In general, for positive integer N {\displaystyle N} , the entries K i j ( N ) {\displaystyle K_{ij}^{(N)}} are given by the generating function:

( 1 + v ) N j ( 1 v ) j = i v i K i j ( N ) , {\displaystyle (1+v)^{N-j}\,(1-v)^{j}=\sum _{i}v^{i}K_{ij}^{(N)},}

where the row and column indices i {\displaystyle i} and j {\displaystyle j} run from 0 {\displaystyle 0} to N {\displaystyle N} . Explicitly:

K i j ( N ) = k ( 1 ) k ( j k ) ( N j i k ) , {\displaystyle K_{ij}^{(N)}=\sum _{k}(-1)^{k}{\binom {j}{k}}{\binom {N-j}{i-k}},}

or in terms of the Krawtchouk polynomials:

K i j ( N ) = κ i ( j , N ) . {\displaystyle K_{ij}^{(N)}=\kappa _{i}(j,N).}

The values of a Krawchouk matrix can also be calculated using a recurrence relation. Filling the top row with ones and the rightmost column with alternating binomial coefficients, the other entries are each given by the sum of the neighbouring entries to the top, topright and right.

Properties

The Krawtchouk polynomials are orthogonal with respect to symmetric binomial distributions, p = 1 / 2 {\displaystyle p=1/2} .

As a transformation, a Krawtchouk matrix is an involution up to scaling:

( K i j ( N ) ) 2 = 2 N I . {\displaystyle (K_{ij}^{(N)})^{2}=2^{N}I.}

Krawchouk matrices have an LDU decomposition involving triangular Pascal matrices and a diagonal matrix of the powers of 2.

The eigenvalues are ± 2 n {\displaystyle \pm {\sqrt {2^{n}}}} , and the determinant is ( 2 ) n ( n + 1 ) / 2 {\displaystyle (-2)^{n(n+1)/2}} .

See also

References

  1. Bose, N. (1985). Digital Filters: Theory and Applications. New York: North-Holland Elsevier. ISBN 0-444-00980-9.
  2. Feinsilver, P.; Kocik, J. (2004). Krawtchouk polynomials and Krawtchouk matrices. Recent Advances in Applied Probability. Springer-Verlag. arXiv:quant-ph/0702073. Bibcode:2007quant.ph..2073F.
  3. Feinsilver, P.; Kocik, J. (2007). "Krawtchouk matrices from classical and quantum random walks". arXiv:quant-ph/0702173.
  4. "Hahn Class: Definitions". Digital Library of Mathematical Functions.
  5. ^ Boyd, Geoff; Micchelli, Charles A.; Strang, Gilbert; Zhou, Ding-Xuan (2001). "Binomial Matrices". Advances in Computational Mathematics. 14 (4): 379–391. doi:10.1023/A:1012207124894. ISSN 1572-9044. S2CID 36314402.

External links

Matrix classes
Explicitly constrained entries
Constant
Conditions on eigenvalues or eigenvectors
Satisfying conditions on products or inverses
With specific applications
Used in statistics
Used in graph theory
Used in science and engineering
Related terms


Stub icon

This article about matrices is a stub. You can help Misplaced Pages by expanding it.

Categories:
Krawtchouk matrices Add topic