In mathematics , the incomplete Fermi-Dirac integral , named after Enrico Fermi and Paul Dirac , for an index
j
{\displaystyle j}
and parameter
b
{\displaystyle b}
is given by
F
j
(
x
,
b
)
=
d
e
f
1
Γ
(
j
+
1
)
∫
b
∞
t
j
e
t
−
x
+
1
d
t
{\displaystyle \operatorname {F} _{j}(x,b){\overset {\mathrm {def} }{=}}{\frac {1}{\Gamma (j+1)}}\int _{b}^{\infty }\!{\frac {t^{j}}{e^{t-x}+1}}\;\mathrm {d} t}
Its derivative is
d
d
x
F
j
(
x
,
b
)
=
F
j
−
1
(
x
,
b
)
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {F} _{j}(x,b)=\operatorname {F} _{j-1}(x,b)}
and this derivative relationship may be used to find the value of the incomplete Fermi-Dirac integral for non-positive indices
j
{\displaystyle j}
.
This is an alternate definition of the incomplete polylogarithm , since:
F
j
(
x
,
b
)
=
1
Γ
(
j
+
1
)
∫
b
∞
t
j
e
t
−
x
+
1
d
t
=
1
Γ
(
j
+
1
)
∫
b
∞
t
j
e
t
e
x
+
1
d
t
=
−
1
Γ
(
j
+
1
)
∫
b
∞
t
j
e
t
−
e
x
−
1
d
t
=
−
Li
j
+
1
(
b
,
−
e
x
)
{\displaystyle \operatorname {F} _{j}(x,b)={\frac {1}{\Gamma (j+1)}}\int _{b}^{\infty }\!{\frac {t^{j}}{e^{t-x}+1}}\;\mathrm {d} t={\frac {1}{\Gamma (j+1)}}\int _{b}^{\infty }\!{\frac {t^{j}}{\displaystyle {\frac {e^{t}}{e^{x}}}+1}}\;\mathrm {d} t=-{\frac {1}{\Gamma (j+1)}}\int _{b}^{\infty }\!{\frac {t^{j}}{\displaystyle {\frac {e^{t}}{-e^{x}}}-1}}\;\mathrm {d} t=-\operatorname {Li} _{j+1}(b,-e^{x})}
Which can be used to prove the identity:
F
j
(
x
,
b
)
=
−
∑
n
=
1
∞
(
−
1
)
n
n
j
+
1
Γ
(
j
+
1
,
n
b
)
Γ
(
j
+
1
)
e
n
x
{\displaystyle \operatorname {F} _{j}(x,b)=-\sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n^{j+1}}}{\frac {\Gamma (j+1,nb)}{\Gamma (j+1)}}e^{nx}}
where
Γ
(
s
)
{\displaystyle \Gamma (s)}
is the gamma function and
Γ
(
s
,
y
)
{\displaystyle \Gamma (s,y)}
is the upper incomplete gamma function . Since
Γ
(
s
,
0
)
=
Γ
(
s
)
{\displaystyle \Gamma (s,0)=\Gamma (s)}
, it follows that:
F
j
(
x
,
0
)
=
F
j
(
x
)
{\displaystyle \operatorname {F} _{j}(x,0)=\operatorname {F} _{j}(x)}
where
F
j
(
x
)
{\displaystyle \operatorname {F} _{j}(x)}
is the complete Fermi-Dirac integral .
Special values
The closed form of the function exists for
j
=
0
{\displaystyle j=0}
:
F
0
(
x
,
b
)
=
ln
(
1
+
e
x
−
b
)
−
(
b
−
x
)
{\displaystyle \operatorname {F} _{0}(x,b)=\ln \!{\big (}1+e^{x-b}{\big )}-(b-x)}
See also
References
^ Guano, Michele (1995). "Algorithm 745: computation of the complete and incomplete Fermi-Dirac integral" . ACM Transactions on Mathematical Software . 21 (3): 221–232. doi :10.1145/210089.210090 . Retrieved 26 June 2024.
External links
Categories :
Incomplete Fermi–Dirac integral
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑