Misplaced Pages

IEEE 802.11b-1999

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from IEEE 802.11b) Wireless networking standard Not to be confused with IEEE 802.11be.
Wi-Fi generations
Generation IEEE
standard
Adopted Maximum
link rate
(Mb/s)
Radio
frequency
(GHz)
(Wi-Fi 0*) 802.11 1997 1–2 2.4
(Wi-Fi 1*) 802.11b 1999 1–11 2.4
(Wi-Fi 2*) 802.11a 1999 6–54 5
(Wi-Fi 3*) 802.11g 2003 2.4
Wi-Fi 4 802.11n 2009 6.5–600 2.4, 5
Wi-Fi 5 802.11ac 2013 6.5–6933 5
Wi-Fi 6 802.11ax 2021 0.4–9608 2.4, 5
Wi-Fi 6E 2.4, 5, 6
Wi-Fi 7 802.11be 2024 0.4–23,059 2.4, 5, 6
Wi-Fi 8 802.11bn exp. 2028 100,000 2.4, 5, 6
*Wi‑Fi 0, 1, 2, and 3 are named by retroactive inference.
They do not exist in the official nomenclature.

IEEE 802.11b-1999 or 802.11b is an amendment to the IEEE 802.11 wireless networking specification that extends throughout up to 11 Mbit/s using the same 2.4 GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.

802.11 is a set of IEEE standards that govern wireless networking transmission methods. They are commonly used today in their 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax versions to provide wireless connectivity in the home, office and some commercial establishments.

Description

802.11b has a maximum raw data rate of 11 Mbit/s and uses the same CSMA/CA media access method defined in the original standard. Due to the CSMA/CA protocol overhead, in practice the maximum 802.11b throughput that an application can achieve is about 5.9 Mbit/s using TCP and 7.1 Mbit/s using UDP.

802.11b products appeared on the market in mid-1999, since 802.11b is a direct extension of the DSSS (Direct-sequence spread spectrum) modulation technique defined in the original standard. The Apple iBook was the first mainstream computer sold with optional 802.11b networking. Technically, the 802.11b standard uses complementary code keying (CCK) as its modulation technique, which uses a specific set of length 8 complementary codes that was originally designed for OFDM but was also suitable for use in 802.11b because of its low autocorrelation properties. The dramatic increase in throughput of 802.11b (compared to the original standard) along with simultaneous substantial price reductions led to the rapid acceptance of 802.11b as the definitive wireless LAN technology as well as to the formation of the Wi-Fi Alliance.

802.11b devices suffer interference from other products operating in the 2.4 GHz band. Devices operating in the 2.4 GHz range include: microwave ovens, Bluetooth devices, baby monitors and cordless telephones. Interference issues and user density problems within the 2.4 GHz band have become a major concern and frustration for users.

Code Length bits Modulation
type
Symbol Rate Bit per Symbol Data rate
(Mbit/s)
11-bit Barker code DBPSK 11/11 = 1 1 1
11-bit Barker code DQPSK 11/11 = 1 2 2
8-bit CCK QPSK 11/8 = 1.375 4 5.5
8-bit CCK QPSK 11/8 = 1.375 8 11

Range

802.11b is used in a point-to-multipoint configuration, wherein an access point communicates via an omnidirectional antenna with mobile clients within the range of the access point. Typical range depends on the radio frequency environment, output power and sensitivity of the receiver. Allowable bandwidth is shared across clients in discrete channels. A directional antenna focuses transmit and receive power into a smaller field which reduces interference and increases point-to-point range. Designers of such installations who wish to remain within the law must however be careful about legal limitations on effective radiated power.

Some 802.11b cards operate at 11 Mbit/s, but scale back to 5.5, then to 2, then to 1 Mbit/s (also known as Adaptive Rate Selection) in order to decrease the rate of re-broadcasts that result from errors.

Channels and frequencies

802.11b/g channels in 2.4 GHz band
channel to frequency map
Channel  Center frequency  Frequency delta Channel width Overlaps channels
1 2.412 GHz 5 MHz 2.401–2.423 GHz 2-5
2 2.417 GHz 5 MHz 2.406–2.428 GHz 1,3-6
3 2.422 GHz 5 MHz 2.411–2.433 GHz 1–2,4-7
4 2.427 GHz 5 MHz 2.416–2.438 GHz 1–3,5-8
5 2.432 GHz 5 MHz 2.421–2.443 GHz 1–4,6-9
6 2.437 GHz 5 MHz 2.426–2.448 GHz 2–5,7-10
7 2.442 GHz 5 MHz 2.431–2.453 GHz 3–6,8-11
8 2.447 GHz 5 MHz 2.436–2.458 GHz 4–7,9-12
9 2.452 GHz 5 MHz 2.441–2.463 GHz 5–8,10-13
10 2.457 GHz 5 MHz 2.446–2.468 GHz 6–9,11-13
11 2.462 GHz 5 MHz 2.451–2.473 GHz 7-10,12-13
12 2.467 GHz 5 MHz 2.456–2.478 GHz 8-11,13-14
13 2.472 GHz 5 MHz 2.461–2.483 GHz 9-12, 14
14 2.484 GHz 12 MHz 2.473–2.495 GHz 12-13
Note: Channel 14 is only allowed in Japan, Channels 12 & 13 are allowed in most parts of the world. More information can be found in the List of WLAN channels.

Comparison

802.11 network standards
Frequency
range,
or type
PHY Protocol Release
date
Freq­uency Bandwidth Stream
data rate
Max.
MIMO streams
Modulation Approx. range
In­door Out­door
(GHz) (MHz) (Mbit/s)
1–7 GHz DSSS, FHSS 802.11-1997 June 1997 2.4 22 1, 2 DSSS, FHSS 20 m (66 ft) 100 m (330 ft)
HR/DSSS 802.11b September 1999 2.4 22 1, 2, 5.5, 11 CCK, DSSS 35 m (115 ft) 140 m (460 ft)
OFDM 802.11a September 1999 5 5, 10, 20 6, 9, 12, 18, 24, 36, 48, 54
(for 20 MHz bandwidth,
divide by 2 and 4 for 10 and 5 MHz)
OFDM 35 m (115 ft) 120 m (390 ft)
802.11j November 2004 4.9, 5.0
? ?
802.11y November 2008 3.7 ? 5,000 m (16,000 ft)
802.11p July 2010 5.9 200 m 1,000 m (3,300 ft)
802.11bd December 2022 5.9, 60 500 m 1,000 m (3,300 ft)
ERP-OFDM 802.11g June 2003 2.4 38 m (125 ft) 140 m (460 ft)
HT-OFDM 802.11n
(Wi-Fi 4)
October 2009 2.4, 5 20 Up to 288.8 4 MIMO-OFDM
(64-QAM)
70 m (230 ft) 250 m (820 ft)
40 Up to 600
VHT-OFDM 802.11ac
(Wi-Fi 5)
December 2013 5 20 Up to 693 8 DL
MU-MIMO OFDM
(256-QAM)
35 m (115 ft) ?
40 Up to 1600
80 Up to 3467
160 Up to 6933
HE-OFDMA 802.11ax
(Wi-Fi 6,
Wi-Fi 6E)
May 2021 2.4, 5, 6 20 Up to 1147 8 UL/DL
MU-MIMO OFDMA
(1024-QAM)
30 m (98 ft) 120 m (390 ft)
40 Up to 2294
80 Up to 5.5 Gbit/s
80+80 Up to 11.0 Gbit/s
EHT-OFDMA 802.11be
(Wi-Fi 7)
Sep 2024
(est.)
2.4, 5, 6 80 Up to 11.5 Gbit/s 16 UL/DL
MU-MIMO OFDMA
(4096-QAM)
30 m (98 ft) 120 m (390 ft)
160
(80+80)
Up to 23 Gbit/s
240
(160+80)
Up to 35 Gbit/s
320
(160+160)
Up to 46.1 Gbit/s
UHR 802.11bn
(Wi-Fi 8)
May 2028
(est.)
2.4, 5, 6,
42, 60, 71
320 Up to
100000
(100 Gbit/s)
16 Multi-link
MU-MIMO OFDM
(8192-QAM)
? ?
WUR 802.11ba October 2021 2.4, 5 4, 20 0.0625, 0.25
(62.5 kbit/s, 250 kbit/s)
OOK (multi-carrier OOK) ? ?
mmWave
(WiGig)
DMG 802.11ad December 2012 60 2160
(2.16 GHz)
Up to 8085
(8 Gbit/s)
OFDM, single carrier, low-power single carrier 3.3 m (11 ft) ?
802.11aj April 2018 60 1080 Up to 3754
(3.75 Gbit/s)
single carrier, low-power single carrier ? ?
CMMG 802.11aj April 2018 45 540,
1080
Up to 15015
(15 Gbit/s)
4 OFDM, single carrier ? ?
EDMG 802.11ay July 2021 60 Up to 8640
(8.64 GHz)
Up to 303336
(303 Gbit/s)
8 OFDM, single carrier 10 m (33 ft) 100 m (328 ft)
Sub 1 GHz (IoT) TVHT 802.11af February 2014 0.054–
0.79
6, 7, 8 Up to 568.9 4 MIMO-OFDM ? ?
S1G 802.11ah May 2017 0.7, 0.8,
0.9
1–16 Up to 8.67
(@2 MHz)
4 ? ?
Light
(Li-Fi)
LC
(VLC/OWC)
802.11bb December 2023
(est.)
800–1000 nm 20 Up to 9.6 Gbit/s O-OFDM ? ?
IR
(IrDA)
802.11-1997 June 1997 850–900 nm ? 1, 2 PPM ? ?
802.11 Standard rollups
  802.11-2007 (802.11ma) March 2007 2.4, 5 Up to 54 DSSS, OFDM
802.11-2012 (802.11mb) March 2012 2.4, 5 Up to 150 DSSS, OFDM
802.11-2016 (802.11mc) December 2016 2.4, 5, 60 Up to 866.7 or 6757 DSSS, OFDM
802.11-2020 (802.11md) December 2020 2.4, 5, 60 Up to 866.7 or 6757 DSSS, OFDM
802.11me September 2024
(est.)
2.4, 5, 6, 60 Up to 9608 or 303336 DSSS, OFDM
  1. ^ This is obsolete, and support for this might be subject to removal in a future revision of the standard
  2. For Japanese regulation.
  3. ^ IEEE 802.11y-2008 extended operation of 802.11a to the licensed 3.7 GHz band. Increased power limits allow a range up to 5,000 m. As of 2009, it is only being licensed in the United States by the FCC.
  4. ^ Based on short guard interval; standard guard interval is ~10% slower. Rates vary widely based on distance, obstructions, and interference.
  5. ^ For single-user cases only, based on default guard interval which is 0.8 microseconds. Since multi-user via OFDMA has become available for 802.11ax, these may decrease. Also, these theoretical values depend on the link distance, whether the link is line-of-sight or not, interferences and the multi-path components in the environment.
  6. ^ The default guard interval is 0.8 microseconds. However, 802.11ax extended the maximum available guard interval to 3.2 microseconds, in order to support Outdoor communications, where the maximum possible propagation delay is larger compared to Indoor environments.
  7. Wake-up Radio (WUR) Operation.
  8. ^ For Chinese regulation.

See also

Notes

  1. 802.11ac only specifies operation in the 5 GHz band. Operation in the 2.4 GHz band is specified by 802.11n.
  2. Wi-Fi 6E is the industry name that identifies Wi-Fi devices that operate in 6 GHz. Wi-Fi 6E offers the features and capabilities of Wi-Fi 6 extended into the 6 GHz band.
  3. The Wi-Fi Alliance began certifying Wi-Fi 7 devices in 2024, but as of December 2024 the IEEE standard 802.11be is yet to be ratified

References

  1. "MCS table (updated with 80211ax data rates)". semfionetworks.com.
  2. "Understanding Wi-Fi 4/5/6/6E/7". wiisfi.com.
  3. Reshef, Ehud; Cordeiro, Carlos (2023). "Future Directions for Wi-Fi 8 and Beyond". IEEE Communications Magazine. 60 (10). IEEE. doi:10.1109/MCOM.003.2200037. Retrieved 2024-05-21.
  4. "What is Wi-Fi 8?". everythingrf.com. March 25, 2023. Retrieved January 21, 2024.
  5. Giordano, Lorenzo; Geraci, Giovanni; Carrascosa, Marc; Bellalta, Boris (November 21, 2023). "What Will Wi-Fi 8 Be? A Primer on IEEE 802.11bn Ultra High Reliability". arXiv:2303.10442.
  6. Kastrenakes, Jacob (2018-10-03). "Wi-Fi Now Has Version Numbers, and Wi-Fi 6 Comes Out Next Year". The Verge. Retrieved 2019-05-02.
  7. Phillips, Gavin (18 January 2021). "The Most Common Wi-Fi Standards and Types, Explained". MUO - Make Use Of. Archived from the original on 11 November 2021. Retrieved 9 November 2021.
  8. "Wi-Fi Generation Numbering". ElectronicsNotes. Archived from the original on 11 November 2021. Retrieved 10 November 2021.
  9. Van Nee, Richard (November 1996). "OFDM codes for peak-to-average power reduction and error correction". IEEE Globecom. London.
  10. Webster, Mark; Andren, Carl; Boer, Jan; Van Nee, Richard (July 1998). "Harris/Lucent TGb Compromise CCK 11Mbps Proposal". IEEE 802.11-98/246a. London.
  11. "Code of Federal Regulations, Title 47-Telecommunications, Chapter I-Federal Communications Commission, Part 15-Radio Frequency Devices, Section 15.247" (PDF). 2006-10-01. Archived (PDF) from the original on 2012-09-07. Retrieved 2013-06-10.
  12. http://download.wcvirtual.com/reference/802%20Channel%20Freq%20Mappings.pdf
  13. "Official IEEE 802.11 working group project timelines". January 26, 2017. Retrieved 2017-02-12.
  14. "Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi Networks" (PDF). Wi-Fi Alliance. September 2009.
  15. ^ Banerji, Sourangsu; Chowdhury, Rahul Singha. "On IEEE 802.11: Wireless LAN Technology". arXiv:1307.2661.
  16. "The complete family of wireless LAN standards: 802.11 a, b, g, j, n" (PDF).
  17. The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges (PDF). World Congress on Engineering and Computer Science. 2014.
  18. IEEE Standard for Information Technology- Telecommunications and Information Exchange Between Systems- Local and Metropolitan Area Networks- Specific Requirements Part Ii: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (n.d.). doi:10.1109/ieeestd.2003.94282
  19. ^ "Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice" (PDF).
  20. Belanger, Phil; Biba, Ken (2007-05-31). "802.11n Delivers Better Range". Wi-Fi Planet. Archived from the original on 2008-11-24.
  21. "IEEE 802.11ac: What Does it Mean for Test?" (PDF). LitePoint. October 2013. Archived from the original (PDF) on 2014-08-16.
  22. "IEEE Standard for Information Technology". IEEE Std 802.11aj-2018. April 2018. doi:10.1109/IEEESTD.2018.8345727.
  23. "802.11ad – WLAN at 60 GHz: A Technology Introduction" (PDF). Rohde & Schwarz GmbH. November 21, 2013. p. 14.
  24. "Connect802 – 802.11ac Discussion". www.connect802.com.
  25. "Understanding IEEE 802.11ad Physical Layer and Measurement Challenges" (PDF).
  26. "802.11aj Press Release".
  27. "An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System". IEICE Transactions on Communications. E101.B (2): 262–276. 2018. doi:10.1587/transcom.2017ISI0004.
  28. "IEEE 802.11ay: 1st real standard for Broadband Wireless Access (BWA) via mmWave – Technology Blog". techblog.comsoc.org.
  29. "P802.11 Wireless LANs". IEEE. pp. 2, 3. Archived from the original on 2017-12-06. Retrieved Dec 6, 2017.
  30. ^ "802.11 Alternate PHYs A whitepaper by Ayman Mukaddam" (PDF).
  31. "TGaf PHY proposal". IEEE P802.11. 2012-07-10. Retrieved 2013-12-29.
  32. "IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz" (PDF). Journal of ICT Standardization. 1 (1): 83–108. July 2013. doi:10.13052/jicts2245-800X.115.
IEEE standards
Current
802 series
802
802.1
802.3
(Ethernet)
802.11
(Wi-Fi)
802.15
Proposed
Superseded
Category:
IEEE 802.11b-1999 Add topic