Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
An abelian group
In mathematics, given a groupG, a G-module is an abelian groupM on which Gacts compatibly with the abelian group structure on M. This widely applicable notion generalizes that of a representation of G. Group (co)homology provides an important set of tools for studying general G-modules.
The term G-module is also used for the more general notion of an R-module on which G acts linearly (i.e. as a group of R-module automorphisms).
Definition and basics
Let be a group. A left -module consists of an abelian group together with a left group action such that
for all and in and all in , where denotes . A right -module is defined similarly. Given a left -module , it can be turned into a right -module by defining .
The collection of left (respectively right) -modules and their morphisms form an abelian category (resp. ). The category (resp. ) can be identified with the category of left (resp. right) -modules, i.e. with the modules over the group ring .
A submodule of a -module is a subgroup that is stable under the action of , i.e. for all and . Given a submodule of , the quotient module is the quotient group with action .
Examples
Given a group , the abelian group is a -module with the trivial action .
If is a representation of over a field , then is a -module (it is an abelian group under addition).
Topological groups
If G is a topological group and M is an abelian topological group, then a topological G-module is a G-module where the action map G×M → M is continuous (where the product topology is taken on G×M).
In other words, a topological G-module is an abelian topological group M together with a continuous map G×M → M satisfying the usual relations g(a + a′) = ga + ga′, (gg′)a = g(g′a), and 1a = a.
Kim, Myung-Hwan (1999), Integral Quadratic Forms and Lattices: Proceedings of the International Conference on Integral Quadratic Forms and Lattices, June 15–19, 1998, Seoul National University, Korea, American Mathematical Soc.