In algebraic geometry, the flag bundle of a flag
of vector bundles on an algebraic scheme X is the algebraic scheme over X:
such that is a flag of vector spaces such that is a vector subspace of of dimension i.
If X is a point, then a flag bundle is a flag variety and if the length of the flag is one, then it is the Grassmann bundle; hence, a flag bundle is a common generalization of these two notions.
Construction
A flag bundle can be constructed inductively.
References
- Here, is a subbundle not subsheaf of
- William Fulton. (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4, MR 1644323
- Expo. VI, § 4. of Berthelot, Pierre; Alexandre Grothendieck; Luc Illusie, eds. (1971). Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème de Riemann-Roch - (SGA 6) (Lecture notes in mathematics 225) (in French). Berlin; New York: Springer-Verlag. xii+700. doi:10.1007/BFb0066283. ISBN 978-3-540-05647-8. MR 0354655.
This algebraic geometry–related article is a stub. You can help Misplaced Pages by expanding it. |