This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message) |
In mathematics, a fibrifold is (roughly) a fiber space whose fibers and base spaces are orbifolds. They were introduced by John Horton Conway, Olaf Delgado Friedrichs, and Daniel H. Huson et al. (2001), who introduced a system of notation for 3-dimensional fibrifolds and used this to assign names to the 219 affine space group types. 184 of these are considered reducible, and 35 irreducible.
Irreducible cubic space groups
The 35 irreducible space groups correspond to the cubic space group.
8:2 | 4:2 | 4:2 | 4:2 | 2:2 | 2:2 | 2:2 | 1:2 | |||
8 | 4 | 4 | 4 | 2 | 2 | 2 | 1 | |||
8/4 | 4/4 | 4/4 | 4/4 | 2/4 | 2/4 | 2/4 | 1/4 | |||
8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 |
Class Point group |
Hexoctahedral *432 (m3m) |
Hextetrahedral *332 (43m) |
Gyroidal 432 (432) |
Diploidal 3*2 (m3) |
Tetartoidal 332 (23) |
---|---|---|---|---|---|
bc lattice (I) | 8:2 (Im3m) | 4:2 (I43m) | 8 (I432) | 8 (I3) | 4 (I23) |
nc lattice (P) | 4:2 (Pm3m) | 2:2 (P43m) | 4 (P432) | 4 (Pm3) | 2 (P23) |
4:2 (Pn3m) | 4 (P4232) | 4 (Pn3) | |||
fc lattice (F) | 2:2 (Fm3m) | 1:2 (F43m) | 2 (F432) | 2 (Fm3) | 1 (F23) |
2:2 (Fd3m) | 2 (F4132) | 2 (Fd3) | |||
Other lattice groups |
8 (Pm3n) 8 (Pn3n) 4 (Fm3c) 4 (Fd3c) |
4 (P43n) 2 (F43c) |
|||
Achiral quarter groups |
8/4 (Ia3d) | 4/4 (I43d) | 4/4 (I4132) 2/4 (P4332, P4132) |
2/4 (Pa3) 4/4 (Ia3) |
1/4 (P213) 2/4 (I213) |
8 primary hexoctahedral hextetrahedral lattices of the cubic space groups | The fibrifold cubic subgroup structure shown is based on extending symmetry of the tetragonal disphenoid fundamental domain of space group 216, similar to the square |
Irreducible group symbols (indexed 195−230) in Hermann–Mauguin notation, Fibrifold notation, geometric notation, and Coxeter notation:
Class (Orbifold point group) |
Space groups | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tetartoidal 23 (332) |
195 | 196 | 197 | 198 | 199 | |||||
P23 | F23 | I23 | P213 | I213 | ||||||
2 | 1 | 4 | 1/4 | 2/4 | ||||||
P3.3.2 | F3.3.2 | I3.3.2 | P3.3.21 | I3.3.21 | ||||||
] | ||||||||||
Diploidal 43m (3*2) |
200 | 201 | 202 | 203 | 204 | 205 | 206 | |||
Pm3 | Pn3 | Fm3 | Fd3 | I3 | Pa3 | Ia3 | ||||
4 | 4 | 2 | 2 | 8 | 2/4 | 4/4 | ||||
P43 | Pn43 | F43 | Fd43 | I43 | Pb43 | Ib43 | ||||
] | ] | ] | ||||||||
Gyroidal 432 (432) |
207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | ||
P432 | P4232 | F432 | F4132 | I432 | P4332 | P4132 | I4132 | |||
4 | 4 | 2 | 2 | 8 | 2/4 | 4/4 | ||||
P4.3.2 | P42.3.2 | F4.3.2 | F41.3.2 | I4.3.2 | P43.3.2 | P41.3.2 | I41.3.2 | |||
] | ] | ] | ||||||||
Hextetrahedral 43m (*332) |
215 | 216 | 217 | 218 | 219 | 220 | ||||
P43m | F43m | I43m | P43n | F43c | I43d | |||||
2:2 | 1:2 | 4:2 | 4 | 2 | 4/4 | |||||
P33 | F33 | I33 | Pn3n3n | Fc3c3a | Id3d3d | |||||
] | ] | |||||||||
Hexoctahedral m3m (*432) |
221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 |
Pm3m | Pn3n | Pm3n | Pn3m | Fm3m | Fm3c | Fd3m | Fd3c | Im3m | Ia3d | |
4:2 | 8 | 8 | 4:2 | 2:2 | 4 | 2:2 | 4 | 8:2 | 8/4 | |
P43 | Pn4n3n | P4n3n | Pn43 | F43 | F4c3a | Fd4n3 | Fd4c3a | I43 | Ib4d3d | |
] | ] | ] | ] | ] |
References
- Conway, John Horton; Delgado Friedrichs, Olaf; Huson, Daniel H.; Thurston, William P. (2001), "On three-dimensional space groups", Beiträge zur Algebra und Geometrie, 42 (2): 475–507, ISSN 0138-4821, MR 1865535
- Hestenes, David; Holt, Jeremy W. (February 2007), "The Crystallographic Space Groups in Geometric Algebra" (PDF), Journal of Mathematical Physics, 48 (2): 023514, Bibcode:2007JMP....48b3514H, doi:10.1063/1.2426416
- Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008), The Symmetries of Things, Taylor & Francis, ISBN 978-1-56881-220-5, Zbl 1173.00001
- Coxeter, H.S.M. (1995), "Regular and Semi Regular Polytopes III", in Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C.; et al. (eds.), Kaleidoscopes: Selected Writings of H.S.M. Coxeter, Wiley, pp. 313–358, ISBN 978-0-471-01003-6, Zbl 0976.01023
This geometry-related article is a stub. You can help Misplaced Pages by expanding it. |