Misplaced Pages

Ethernet

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ethernet port) Computer networking technology

An Ethernet port on a laptop computer connected to a twisted pair cable with an 8P8C modular connector
Symbol used by Apple and Google on some devices to denote an Ethernet connection

Ethernet (/ˈiːθərnɛt/ EE-thər-net) is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

The original 10BASE5 Ethernet uses a thick coaxial cable as a shared medium. This was largely superseded by 10BASE2, which used a thinner and more flexible cable that was both cheaper and easier to use. More modern Ethernet variants use twisted pair and fiber optic links in conjunction with switches. Over the course of its history, Ethernet data transfer rates have been increased from the original 2.94 Mbit/s to the latest 800 Gbit/s, with rates up to 1.6 Tbit/s under development. The Ethernet standards include several wiring and signaling variants of the OSI physical layer.

Systems communicating over Ethernet divide a stream of data into shorter pieces called frames. Each frame contains source and destination addresses, and error-checking data so that damaged frames can be detected and discarded; most often, higher-layer protocols trigger retransmission of lost frames. Per the OSI model, Ethernet provides services up to and including the data link layer. The 48-bit MAC address was adopted by other IEEE 802 networking standards, including IEEE 802.11 (Wi-Fi), as well as by FDDI. EtherType values are also used in Subnetwork Access Protocol (SNAP) headers.

Ethernet is widely used in homes and industry, and interworks well with wireless Wi-Fi technologies. The Internet Protocol is commonly carried over Ethernet and so it is considered one of the key technologies that make up the Internet.

History

Accton Etherpocket-SP parallel port Ethernet adapter (c. 1990). Supports both coaxial (10BASE2) and twisted pair (10BASE-T) cables. Power is drawn from a PS/2 port passthrough cable.

Ethernet was developed at Xerox PARC between 1973 and 1974 as a means to allow Alto computers to communicate with each other. It was inspired by ALOHAnet, which Robert Metcalfe had studied as part of his PhD dissertation and was originally called the Alto Aloha Network. Metcalfe's idea was essentially to limit the Aloha-like signals inside a cable, instead of broadcasting into the air. The idea was first documented in a memo that Metcalfe wrote on May 22, 1973, where he named it after the luminiferous aether once postulated to exist as an "omnipresent, completely passive medium for the propagation of electromagnetic waves."

In 1975, Xerox filed a patent application listing Metcalfe, David Boggs, Chuck Thacker, and Butler Lampson as inventors. In 1976, after the system was deployed at PARC, Metcalfe and Boggs published a seminal paper. Ron Crane, Yogen Dalal, Robert Garner, Hal Murray, Roy Ogus, Dave Redell and John Shoch facilitated the upgrade from the original 2.94 Mbit/s protocol to the 10 Mbit/s protocol, which was released to the market in 1980.

Metcalfe left Xerox in June 1979 to form 3Com. He convinced Digital Equipment Corporation (DEC), Intel, and Xerox to work together to promote Ethernet as a standard. As part of that process Xerox agreed to relinquish their 'Ethernet' trademark. The first standard was published on September 30, 1980, as "The Ethernet, A Local Area Network. Data Link Layer and Physical Layer Specifications". This so-called DIX standard (Digital Intel Xerox) specified 10 Mbit/s Ethernet, with 48-bit destination and source addresses and a global 16-bit Ethertype-type field. Version 2 was published in November 1982 and defines what has become known as Ethernet II. Formal standardization efforts proceeded at the same time and resulted in the publication of IEEE 802.3 on June 23, 1983.

Ethernet initially competed with Token Ring and other proprietary protocols. Ethernet was able to adapt to market needs, and with 10BASE2 shift to inexpensive thin coaxial cable, and from 1990 to the now-ubiquitous twisted pair with 10BASE-T. By the end of the 1980s, Ethernet was clearly the dominant network technology. In the process, 3Com became a major company. 3Com shipped its first 10 Mbit/s Ethernet 3C100 NIC in March 1981, and that year started selling adapters for PDP-11s and VAXes, as well as Multibus-based Intel and Sun Microsystems computers. This was followed quickly by DEC's Unibus to Ethernet adapter, which DEC sold and used internally to build its own corporate network, which reached over 10,000 nodes by 1986, making it one of the largest computer networks in the world at that time. An Ethernet adapter card for the IBM PC was released in 1982, and, by 1985, 3Com had sold 100,000. In the 1980s, IBM's own PC Network product competed with Ethernet for the PC, and through the 1980s, LAN hardware, in general, was not common on PCs. However, in the mid to late 1980s, PC networking did become popular in offices and schools for printer and fileserver sharing, and among the many diverse competing LAN technologies of that decade, Ethernet was one of the most popular. Parallel port based Ethernet adapters were produced for a time, with drivers for DOS and Windows. By the early 1990s, Ethernet became so prevalent that Ethernet ports began to appear on some PCs and most workstations. This process was greatly sped up with the introduction of 10BASE-T and its relatively small modular connector, at which point Ethernet ports appeared even on low-end motherboards.

Since then, Ethernet technology has evolved to meet new bandwidth and market requirements. In addition to computers, Ethernet is now used to interconnect appliances and other personal devices. As Industrial Ethernet it is used in industrial applications and is quickly replacing legacy data transmission systems in the world's telecommunications networks. By 2010, the market for Ethernet equipment amounted to over $16 billion per year.

Standardization

An Intel 82574L Gigabit Ethernet NIC, PCI Express ×1 card

In February 1980, the Institute of Electrical and Electronics Engineers (IEEE) started project 802 to standardize local area networks (LAN). The DIX group with Gary Robinson (DEC), Phil Arst (Intel), and Bob Printis (Xerox) submitted the so-called Blue Book CSMA/CD specification as a candidate for the LAN specification. In addition to CSMA/CD, Token Ring (supported by IBM) and Token Bus (selected and henceforward supported by General Motors) were also considered as candidates for a LAN standard. Competing proposals and broad interest in the initiative led to strong disagreement over which technology to standardize. In December 1980, the group was split into three subgroups, and standardization proceeded separately for each proposal.

Delays in the standards process put at risk the market introduction of the Xerox Star workstation and 3Com's Ethernet LAN products. With such business implications in mind, David Liddle (General Manager, Xerox Office Systems) and Metcalfe (3Com) strongly supported a proposal of Fritz Röscheisen (Siemens Private Networks) for an alliance in the emerging office communication market, including Siemens' support for the international standardization of Ethernet (April 10, 1981). Ingrid Fromm, Siemens' representative to IEEE 802, quickly achieved broader support for Ethernet beyond IEEE by the establishment of a competing Task Group "Local Networks" within the European standards body ECMA TC24. In March 1982, ECMA TC24 with its corporate members reached an agreement on a standard for CSMA/CD based on the IEEE 802 draft. Because the DIX proposal was most technically complete and because of the speedy action taken by ECMA which decisively contributed to the conciliation of opinions within IEEE, the IEEE 802.3 CSMA/CD standard was approved in December 1982. IEEE published the 802.3 standard as a draft in 1983 and as a standard in 1985.

Approval of Ethernet on the international level was achieved by a similar, cross-partisan action with Fromm as the liaison officer working to integrate with International Electrotechnical Commission (IEC) Technical Committee 83 and International Organization for Standardization (ISO) Technical Committee 97 Sub Committee 6. The ISO 8802-3 standard was published in 1989.

Evolution

Internet protocol suite
Application layer
Transport layer
Internet layer
Link layer

Ethernet has evolved to include higher bandwidth, improved medium access control methods, and different physical media. The multidrop coaxial cable was replaced with physical point-to-point links connected by Ethernet repeaters or switches.

Ethernet stations communicate by sending each other data packets: blocks of data individually sent and delivered. As with other IEEE 802 LANs, adapters come programmed with globally unique 48-bit MAC address so that each Ethernet station has a unique address. The MAC addresses are used to specify both the destination and the source of each data packet. Ethernet establishes link-level connections, which can be defined using both the destination and source addresses. On reception of a transmission, the receiver uses the destination address to determine whether the transmission is relevant to the station or should be ignored. A network interface normally does not accept packets addressed to other Ethernet stations.

An EtherType field in each frame is used by the operating system on the receiving station to select the appropriate protocol module (e.g., an Internet Protocol version such as IPv4). Ethernet frames are said to be self-identifying, because of the EtherType field. Self-identifying frames make it possible to intermix multiple protocols on the same physical network and allow a single computer to use multiple protocols together. Despite the evolution of Ethernet technology, all generations of Ethernet (excluding early experimental versions) use the same frame formats. Mixed-speed networks can be built using Ethernet switches and repeaters supporting the desired Ethernet variants.

Due to the ubiquity of Ethernet, and the ever-decreasing cost of the hardware needed to support it, by 2004 most manufacturers built Ethernet interfaces directly into PC motherboards, eliminating the need for a separate network card.

Shared medium

Older Ethernet equipment. Clockwise from top-left: An Ethernet transceiver with an in-line 10BASE2 adapter, a similar model transceiver with a 10BASE5 adapter, an AUI cable, a different style of transceiver with 10BASE2 BNC T-connector, two 10BASE5 end fittings (N connectors), an orange vampire tap installation tool (which includes a specialized drill bit at one end and a socket wrench at the other), and an early model 10BASE5 transceiver (h4000) manufactured by DEC. The short length of yellow 10BASE5 cable has one end fitted with an N connector and the other end prepared to have an N connector shell installed; the half-black, half-grey rectangular object through which the cable passes is an installed vampire tap.

Ethernet was originally based on the idea of computers communicating over a shared coaxial cable acting as a broadcast transmission medium. The method used was similar to those used in radio systems, with the common cable providing the communication channel likened to the Luminiferous aether in 19th-century physics, and it was from this reference that the name Ethernet was derived.

Original Ethernet's shared coaxial cable (the shared medium) traversed a building or campus to every attached machine. A scheme known as carrier-sense multiple access with collision detection (CSMA/CD) governed the way the computers shared the channel. This scheme was simpler than competing Token Ring or Token Bus technologies. Computers are connected to an Attachment Unit Interface (AUI) transceiver, which is in turn connected to the cable (with thin Ethernet the transceiver is usually integrated into the network adapter). While a simple passive wire is highly reliable for small networks, it is not reliable for large extended networks, where damage to the wire in a single place, or a single bad connector, can make the whole Ethernet segment unusable.

Through the first half of the 1980s, Ethernet's 10BASE5 implementation used a coaxial cable 0.375 inches (9.5 mm) in diameter, later called thick Ethernet or thicknet. Its successor, 10BASE2, called thin Ethernet or thinnet, used the RG-58 coaxial cable. The emphasis was on making installation of the cable easier and less costly.

Since all communication happens on the same wire, any information sent by one computer is received by all, even if that information is intended for just one destination. The network interface card interrupts the CPU only when applicable packets are received: the card ignores information not addressed to it. Use of a single cable also means that the data bandwidth is shared, such that, for example, available data bandwidth to each device is halved when two stations are simultaneously active.

A collision happens when two stations attempt to transmit at the same time. They corrupt transmitted data and require stations to re-transmit. The lost data and re-transmission reduces throughput. In the worst case, where multiple active hosts connected with maximum allowed cable length attempt to transmit many short frames, excessive collisions can reduce throughput dramatically. However, a Xerox report in 1980 studied performance of an existing Ethernet installation under both normal and artificially generated heavy load. The report claimed that 98% throughput on the LAN was observed. This is in contrast with token passing LANs (Token Ring, Token Bus), all of which suffer throughput degradation as each new node comes into the LAN, due to token waits. This report was controversial, as modeling showed that collision-based networks theoretically became unstable under loads as low as 37% of nominal capacity. Many early researchers failed to understand these results. Performance on real networks is significantly better.

In a modern Ethernet, the stations do not all share one channel through a shared cable or a simple repeater hub; instead, each station communicates with a switch, which in turn forwards that traffic to the destination station. In this topology, collisions are only possible if station and switch attempt to communicate with each other at the same time, and collisions are limited to this link. Furthermore, the 10BASE-T standard introduced a full duplex mode of operation which became common with Fast Ethernet and the de facto standard with Gigabit Ethernet. In full duplex, switch and station can send and receive simultaneously, and therefore modern Ethernets are completely collision-free.

  • Comparison between original Ethernet and modern Ethernet
  • The original Ethernet implementation: shared medium, collision-prone. All computers trying to communicate share the same cable, and so compete with each other. The original Ethernet implementation: shared medium, collision-prone. All computers trying to communicate share the same cable, and so compete with each other.
  • Modern Ethernet implementation: switched connection, collision-free. Each computer communicates only with its own switch, without competition for the cable with others. Modern Ethernet implementation: switched connection, collision-free. Each computer communicates only with its own switch, without competition for the cable with others.

Repeaters and hubs

A 1990s ISA network interface card supporting both coaxial-cable-based 10BASE2 (BNC connector, left) and twisted-pair-based 10BASE-T (8P8C connector, right)
Main article: Ethernet hub

For signal degradation and timing reasons, coaxial Ethernet segments have a restricted size. Somewhat larger networks can be built by using an Ethernet repeater. Early repeaters had only two ports, allowing, at most, a doubling of network size. Once repeaters with more than two ports became available, it was possible to wire the network in a star topology. Early experiments with star topologies (called Fibernet) using optical fiber were published by 1978.

Shared cable Ethernet is always hard to install in offices because its bus topology is in conflict with the star topology cable plans designed into buildings for telephony. Modifying Ethernet to conform to twisted-pair telephone wiring already installed in commercial buildings provided another opportunity to lower costs, expand the installed base, and leverage building design, and, thus, twisted-pair Ethernet was the next logical development in the mid-1980s.

Ethernet on unshielded twisted-pair cables (UTP) began with StarLAN at 1 Mbit/s in the mid-1980s. In 1987 SynOptics introduced the first twisted-pair Ethernet at 10 Mbit/s in a star-wired cabling topology with a central hub, later called LattisNet. These evolved into 10BASE-T, which was designed for point-to-point links only, and all termination was built into the device. This changed repeaters from a specialist device used at the center of large networks to a device that every twisted pair-based network with more than two machines had to use. The tree structure that resulted from this made Ethernet networks easier to maintain by preventing most faults with one peer or its associated cable from affecting other devices on the network.

Despite the physical star topology and the presence of separate transmit and receive channels in the twisted pair and fiber media, repeater-based Ethernet networks still use half-duplex and CSMA/CD, with only minimal activity by the repeater, primarily generation of the jam signal in dealing with packet collisions. Every packet is sent to every other port on the repeater, so bandwidth and security problems are not addressed. The total throughput of the repeater is limited to that of a single link, and all links must operate at the same speed.

Bridging and switching

Patch cables with patch fields of two Ethernet switches
Main articles: Network bridge and Network switch

While repeaters can isolate some aspects of Ethernet segments, such as cable breakages, they still forward all traffic to all Ethernet devices. The entire network is one collision domain, and all hosts have to be able to detect collisions anywhere on the network. This limits the number of repeaters between the farthest nodes and creates practical limits on how many machines can communicate on an Ethernet network. Segments joined by repeaters have to all operate at the same speed, making phased-in upgrades impossible.

To alleviate these problems, bridging was created to communicate at the data link layer while isolating the physical layer. With bridging, only well-formed Ethernet packets are forwarded from one Ethernet segment to another; collisions and packet errors are isolated. At initial startup, Ethernet bridges work somewhat like Ethernet repeaters, passing all traffic between segments. By observing the source addresses of incoming frames, the bridge then builds an address table associating addresses to segments. Once an address is learned, the bridge forwards network traffic destined for that address only to the associated segment, improving overall performance. Broadcast traffic is still forwarded to all network segments. Bridges also overcome the limits on total segments between two hosts and allow the mixing of speeds, both of which are critical to the incremental deployment of faster Ethernet variants.

In 1989, Motorola Codex introduced their 6310 EtherSpan, and Kalpana introduced their EtherSwitch; these were examples of the first commercial Ethernet switches. Early switches such as this used cut-through switching where only the header of the incoming packet is examined before it is either dropped or forwarded to another segment. This reduces the forwarding latency. One drawback of this method is that it does not readily allow a mixture of different link speeds. Another is that packets that have been corrupted are still propagated through the network. The eventual remedy for this was a return to the original store and forward approach of bridging, where the packet is read into a buffer on the switch in its entirety, its frame check sequence verified and only then the packet is forwarded. In modern network equipment, this process is typically done using application-specific integrated circuits allowing packets to be forwarded at wire speed.

When a twisted pair or fiber link segment is used and neither end is connected to a repeater, full-duplex Ethernet becomes possible over that segment. In full-duplex mode, both devices can transmit and receive to and from each other at the same time, and there is no collision domain. This doubles the aggregate bandwidth of the link and is sometimes advertised as double the link speed (for example, 200 Mbit/s for Fast Ethernet). The elimination of the collision domain for these connections also means that all the link's bandwidth can be used by the two devices on that segment and that segment length is not limited by the constraints of collision detection.

Since packets are typically delivered only to the port they are intended for, traffic on a switched Ethernet is less public than on shared-medium Ethernet. Despite this, switched Ethernet should still be regarded as an insecure network technology, because it is easy to subvert switched Ethernet systems by means such as ARP spoofing and MAC flooding.

The bandwidth advantages, the improved isolation of devices from each other, the ability to easily mix different speeds of devices and the elimination of the chaining limits inherent in non-switched Ethernet have made switched Ethernet the dominant network technology.

Advanced networking

A core Ethernet switch

Simple switched Ethernet networks, while a great improvement over repeater-based Ethernet, suffer from single points of failure, attacks that trick switches or hosts into sending data to a machine even if it is not intended for it, scalability and security issues with regard to switching loops, broadcast radiation, and multicast traffic.

Advanced networking features in switches use Shortest Path Bridging (SPB) or the Spanning Tree Protocol (STP) to maintain a loop-free, meshed network, allowing physical loops for redundancy (STP) or load-balancing (SPB). Shortest Path Bridging includes the use of the link-state routing protocol IS-IS to allow larger networks with shortest path routes between devices.

Advanced networking features also ensure port security, provide protection features such as MAC lockdown and broadcast radiation filtering, use VLANs to keep different classes of users separate while using the same physical infrastructure, employ multilayer switching to route between different classes, and use link aggregation to add bandwidth to overloaded links and to provide some redundancy.

In 2016, Ethernet replaced InfiniBand as the most popular system interconnect of TOP500 supercomputers.

Varieties

Main articles: Ethernet physical layer and Ethernet over twisted pair

The Ethernet physical layer evolved over a considerable time span and encompasses coaxial, twisted pair and fiber-optic physical media interfaces, with speeds from 1 Mbit/s to 400 Gbit/s. The first introduction of twisted-pair CSMA/CD was StarLAN, standardized as 802.3 1BASE5. While 1BASE5 had little market penetration, it defined the physical apparatus (wire, plug/jack, pin-out, and wiring plan) that would be carried over to 10BASE-T through 10GBASE-T.

The most common forms used are 10BASE-T, 100BASE-TX, and 1000BASE-T. All three use twisted-pair cables and 8P8C modular connectors. They run at 10 Mbit/s, 100 Mbit/s, and 1 Gbit/s, respectively.

Fiber optic variants of Ethernet (that commonly use SFP modules) are also very popular in larger networks, offering high performance, better electrical isolation and longer distance (tens of kilometers with some versions). In general, network protocol stack software will work similarly on all varieties.

Frame structure

A close-up of the SMSC LAN91C110 (SMSC 91x) chip, an embedded Ethernet chip
Main article: Ethernet frame

In IEEE 802.3, a datagram is called a packet or frame. Packet is used to describe the overall transmission unit and includes the preamble, start frame delimiter (SFD) and carrier extension (if present). The frame begins after the start frame delimiter with a frame header featuring source and destination MAC addresses and the EtherType field giving either the protocol type for the payload protocol or the length of the payload. The middle section of the frame consists of payload data including any headers for other protocols (for example, Internet Protocol) carried in the frame. The frame ends with a 32-bit cyclic redundancy check, which is used to detect corruption of data in transit. Notably, Ethernet packets have no time-to-live field, leading to possible problems in the presence of a switching loop.

Autonegotiation

Main article: Autonegotiation

Autonegotiation is the procedure by which two connected devices choose common transmission parameters, e.g. speed and duplex mode. Autonegotiation was initially an optional feature, first introduced with 100BASE-TX (1995 IEEE 802.3u Fast Ethernet standard), and is backward compatible with 10BASE-T. The specification was improved in the 1998 release of IEEE 802.3. Autonegotiation is mandatory for 1000BASE-T and faster.

Error conditions

Switching loop

Main article: Switching loop

A switching loop or bridge loop occurs in computer networks when there is more than one Layer 2 (OSI model) path between two endpoints (e.g. multiple connections between two network switches or two ports on the same switch connected to each other). The loop creates broadcast storms as broadcasts and multicasts are forwarded by switches out every port, the switch or switches will repeatedly rebroadcast the broadcast messages flooding the network. Since the Layer 2 header does not support a time to live (TTL) value, if a frame is sent into a looped topology, it can loop forever.

A physical topology that contains switching or bridge loops is attractive for redundancy reasons, yet a switched network must not have loops. The solution is to allow physical loops, but create a loop-free logical topology using the SPB protocol or the older STP on the network switches.

Jabber

A node that is sending longer than the maximum transmission window for an Ethernet packet is considered to be jabbering. Depending on the physical topology, jabber detection and remedy differ somewhat.

  • An MAU is required to detect and stop abnormally long transmission from the DTE (longer than 20–150 ms) in order to prevent permanent network disruption.
  • On an electrically shared medium (10BASE5, 10BASE2, 1BASE5), jabber can only be detected by each end node, stopping reception. No further remedy is possible.
  • A repeater/repeater hub uses a jabber timer that ends retransmission to the other ports when it expires. The timer runs for 25,000 to 50,000 bit times for 1 Mbit/s, 40,000 to 75,000 bit times for 10 and 100 Mbit/s, and 80,000 to 150,000 bit times for 1 Gbit/s. Jabbering ports are partitioned off the network until a carrier is no longer detected.
  • End nodes utilizing a MAC layer will usually detect an oversized Ethernet frame and cease receiving. A bridge/switch will not forward the frame.
  • A non-uniform frame size configuration in the network using jumbo frames may be detected as jabber by end nodes. Jumbo frames are not part of the official IEEE 802.3 Ethernet standard.
  • A packet detected as jabber by an upstream repeater and subsequently cut off has an invalid frame check sequence and is dropped.

Runt frames

  • Runts are packets or frames smaller than the minimum allowed size. They are dropped and not propagated.

See also

Notes

  1. The experimental Ethernet described in the 1976 paper ran at 2.94 Mbit/s and has eight-bit destination and source address fields, so the original Ethernet addresses are not the MAC addresses they are today. By software convention, the 16 bits after the destination and source address fields specify a "packet type", but, as the paper says, "different protocols use disjoint sets of packet types". Thus the original packet types could vary within each different protocol. This is in contrast to the EtherType in the IEEE Ethernet standard, which specifies the protocol being used.
  2. In some cases, the factory-assigned address can be overridden, either to avoid an address change when an adapter is replaced or to use locally administered addresses.
  3. ^ Unless it is put into promiscuous mode.
  4. Of course bridges and switches will accept other addresses for forwarding the packet.
  5. There are fundamental differences between wireless and wired shared-medium communication, such as the fact that it is much easier to detect collisions in a wired system than a wireless system.
  6. In a CSMA/CD system packets must be large enough to guarantee that the leading edge of the propagating wave of a message gets to all parts of the medium and back again before the transmitter stops transmitting, guaranteeing that collisions (two or more packets initiated within a window of time that forced them to overlap) are discovered. As a result, the minimum packet size and the physical medium's total length are closely linked.
  7. Multipoint systems are also prone to strange failure modes when an electrical discontinuity reflects the signal in such a manner that some nodes would work properly, while others work slowly because of excessive retries or not at all. See standing wave for an explanation. These could be much more difficult to diagnose than a complete failure of the segment.
  8. This one speaks, all listen property is a security weakness of shared-medium Ethernet, since a node on an Ethernet network can eavesdrop on all traffic on the wire if it so chooses.
  9. The term switch was invented by device manufacturers and does not appear in the IEEE 802.3 standard.
  10. This is misleading, as performance will double only if traffic patterns are symmetrical.
  11. The carrier extension is defined to assist collision detection on shared-media gigabit Ethernet.

References

  1. Ralph Santitoro (2003). "Metro Ethernet Services – A Technical Overview" (PDF). mef.net. Archived from the original (PDF) on December 22, 2018. Retrieved January 9, 2016.
  2. Xerox (August 1976). "Alto: A Personal Computer System Hardware Manual" (PDF). Xerox. p. 37. Archived (PDF) from the original on September 4, 2017. Retrieved August 25, 2015.
  3. Charles M. Kozierok (September 20, 2005). "Data Link Layer (Layer 2)". tcpipguide.com. Archived from the original on May 20, 2019. Retrieved January 9, 2016.
  4. ^ The History of Ethernet. NetEvents.tv. 2006. Archived from the original on December 11, 2021. Retrieved September 10, 2011.
  5. "Ethernet Prototype Circuit Board". Smithsonian National Museum of American History. 1973. Archived from the original on October 28, 2014. Retrieved September 2, 2007.
  6. ^ Joanna Goodrich (November 16, 2023). "Ethernet is Still Going Strong After 50 Years". IEEE Spectrum.
  7. Gerald W. Brock (September 25, 2003). The Second Information Revolution. Harvard University Press. p. 151. ISBN 0-674-01178-3.
  8. Metz, Cade (March 22, 2023). "Turing Award Won by Co-Inventor of Ethernet Technology". The New York Times. Archived from the original on March 23, 2023. Retrieved March 23, 2023.
  9. Cade Metz (March 13, 2009). "Ethernet – a networking protocol name for the ages: Michelson, Morley, and Metcalfe". The Register. p. 2. Archived from the original on November 8, 2012. Retrieved March 4, 2013.
  10. Mary Bellis. "Inventors of the Modern Computer". About.com. Archived from the original on July 11, 2012. Retrieved September 10, 2011.
  11. U.S. patent 4,063,220 "Multipoint data communication system (with collision detection)"
  12. Robert Metcalfe; David Boggs (July 1976). "Ethernet: Distributed Packet Switching for Local Computer Networks" (PDF). Communications of the ACM. 19 (7): 395–405. doi:10.1145/360248.360253. S2CID 429216. Archived (PDF) from the original on March 15, 2016. Retrieved August 25, 2015.
  13. John F. Shoch; Yogen K. Dalal; David D. Redell; Ronald C. Crane (August 1982). "Evolution of the Ethernet Local Computer Network" (PDF). IEEE Computer. 15 (8): 14–26. doi:10.1109/MC.1982.1654107. S2CID 14546631. Archived (PDF) from the original on August 15, 2011. Retrieved April 7, 2011.
  14. Pelkey, James L. (2007). "Yogen Dalal". Entrepreneurial Capitalism and Innovation: A History of Computer Communications, 1968–1988. Archived from the original on September 5, 2019. Retrieved September 5, 2019.
  15. "Introduction to Ethernet Technologies". www.wband.com. WideBand Products. Archived from the original on April 10, 2018. Retrieved April 9, 2018.
  16. ^ von Burg, Urs; Kenney, Martin (December 2003). "Sponsors, Communities, and Standards: Ethernet vs. Token Ring in the Local Area Networking Business" (PDF). Industry & Innovation. 10 (4): 351–375. doi:10.1080/1366271032000163621. S2CID 153804163. Archived from the original (PDF) on December 6, 2011. Retrieved February 17, 2014.
  17. Charles E. Spurgeon (2000). "Chapter 1. The Evolution of Ethernet". Ethernet: The Definitive Guide. ISBN 1565926609. Archived from the original on December 5, 2018. Retrieved December 4, 2018.
  18. "Ethernet: Bridging the communications gap". Hardcopy. March 1981. p. 12.
  19. ^ Digital Equipment Corporation; Intel Corporation; Xerox Corporation (September 30, 1980). "The Ethernet, A Local Area Network. Data Link Layer and Physical Layer Specifications, Version 1.0" (PDF). Xerox Corporation. Archived (PDF) from the original on August 25, 2019. Retrieved December 10, 2011. {{cite journal}}: Cite journal requires |journal= (help)
  20. Digital Equipment Corporation; Intel Corporation; Xerox Corporation (November 1982). "The Ethernet, A Local Area Network. Data Link Layer and Physical Layer Specifications, Version 2.0" (PDF). Xerox Corporation. Archived (PDF) from the original on December 15, 2011. Retrieved December 10, 2011. {{cite journal}}: Cite journal requires |journal= (help)
  21. "IEEE 802.3 'Standard for Ethernet' Marks 30 Years of Innovation and Global Market Growth" (Press release). IEEE. June 24, 2013. Archived from the original on January 12, 2014. Retrieved January 11, 2014.
  22. ^ Robert Breyer; Sean Riley (1999). Switched, Fast, and Gigabit Ethernet. Macmillan. ISBN 1-57870-073-6.
  23. Jamie Parker Pearson (1992). Digital at Work. Digital Press. p. 163. ISBN 1-55558-092-0.
  24. Rick Merritt (December 20, 2010). "Shifts, growth ahead for 10G Ethernet". E Times. Archived from the original on January 18, 2012. Retrieved September 10, 2011. {{cite journal}}: Cite journal requires |journal= (help)
  25. "My oh My – Ethernet Growth Continues to Soar; Surpasses Legacy". Telecom News Now. July 29, 2011. Archived from the original on November 18, 2011. Retrieved September 10, 2011.
  26. Jim Duffy (February 22, 2010). "Cisco, Juniper, HP drive Ethernet switch market in Q4". Network World. International Data Group. Archived from the original on August 11, 2019. Retrieved August 11, 2019.
  27. Vic Hayes (August 27, 2001). "Letter to FCC" (PDF). Archived from the original (PDF) on July 27, 2011. Retrieved October 22, 2010. IEEE 802 has the basic charter to develop and maintain networking standards... IEEE 802 was formed in February 1980...
  28. IEEE 802.3-2008, p.iv
  29. "ISO 8802-3:1989". ISO. Archived from the original on July 9, 2015. Retrieved July 8, 2015.
  30. Jim Duffy (April 20, 2009). "Evolution of Ethernet". Network World. Archived from the original on June 11, 2017. Retrieved January 1, 2016.
  31. Douglas E. Comer (2000). Internetworking with TCP/IP – Principles, Protocols and Architecture (4th ed.). Prentice Hall. ISBN 0-13-018380-6. 2.4.9 – Ethernet Hardware Addresses, p. 29, explains the filtering.
  32. Iljitsch van Beijnum (July 15, 2011). "Speed matters: how Ethernet went from 3Mbps to 100Gbps... and beyond". Ars Technica. Archived from the original on July 9, 2012. Retrieved July 15, 2011. All aspects of Ethernet were changed: its MAC procedure, the bit encoding, the wiring... only the packet format has remained the same.
  33. Fast Ethernet Turtorial, Lantronix, December 9, 2014, archived from the original on November 28, 2015, retrieved January 1, 2016
  34. Geetaj Channana (November 1, 2004). "Motherboard Chipsets Roundup". PCQuest. Archived from the original on July 8, 2011. Retrieved October 22, 2010. While comparing motherboards in the last issue we found that all motherboards support Ethernet connection on board.
  35. ^ Charles E. Spurgeon (2000). Ethernet: The Definitive Guide. O'Reilly. ISBN 978-1-56592-660-8.
  36. Heinz-Gerd Hegering; Alfred Lapple (1993). Ethernet: Building a Communications Infrastructure. Addison-Wesley. ISBN 0-201-62405-2.
  37. Ethernet Tutorial – Part I: Networking Basics, Lantronix, December 9, 2014, archived from the original on February 13, 2016, retrieved January 1, 2016
  38. Shoch, John F.; Hupp, Jon A. (December 1980). "Measured performance of an Ethernet local network". Communications of the ACM. 23 (12). ACM Press: 711–721. doi:10.1145/359038.359044. ISSN 0001-0782. S2CID 1002624.
  39. Boggs, D.R.; Mogul, J.C. & Kent, C.A. (September 1988). "Measured capacity of an Ethernet: myths and reality" (PDF). DEC WRL. Archived (PDF) from the original on March 2, 2012. Retrieved December 20, 2012. {{cite journal}}: Cite journal requires |journal= (help)
  40. "Ethernet Media Standards and Distances". kb.wisc.edu. Archived from the original on June 19, 2010. Retrieved October 10, 2017.
  41. Eric G. Rawson; Robert M. Metcalfe (July 1978). "Fibemet: Multimode Optical Fibers for Local Computer Networks" (PDF). IEEE Transactions on Communications. 26 (7): 983–990. doi:10.1109/TCOM.1978.1094189. Archived (PDF) from the original on August 15, 2011. Retrieved June 11, 2011.
  42. Urs von Burg (2001). The Triumph of Ethernet: technological communities and the battle for the LAN standard. Stanford University Press. p. 175. ISBN 0-8047-4094-1. Archived from the original on January 9, 2017. Retrieved September 23, 2016.
  43. ^ Robert J. Kohlhepp (October 2, 2000). "The 10 Most Important Products of the Decade". Network Computing. Archived from the original on January 5, 2010. Retrieved February 25, 2008.
  44. Nick Pidgeon (April 2000). "Full-duplex Ethernet". How Stuff Works. Archived from the original on June 4, 2020. Retrieved February 3, 2020.
  45. Wang, Shuangbao Paul; Ledley, Robert S. (October 25, 2012). Computer Architecture and Security: Fundamentals of Designing Secure Computer Systems. John Wiley & Sons. ISBN 978-1-118-16883-7. Archived from the original on March 15, 2021. Retrieved October 2, 2020.
  46. "Token Ring-to-Ethernet Migration". Cisco. Archived from the original on July 8, 2011. Retrieved October 22, 2010. Respondents were first asked about their current and planned desktop LAN attachment standards. The results were clear—switched Fast Ethernet is the dominant choice for desktop connectivity to the network
  47. David Davis (October 11, 2007). "Lock down Cisco switch port security". Archived from the original on July 31, 2020. Retrieved April 19, 2020.
  48. "HIGHLIGHTS – JUNE 2016". June 2016. Archived from the original on January 30, 2021. Retrieved February 19, 2021. InfiniBand technology is now found on 205 systems, down from 235 systems, and is now the second most-used internal system interconnect technology. Gigabit Ethernet has risen to 218 systems up from 182 systems, in large part thanks to 176 systems now using 10G interfaces.
  49. "[STDS-802-3-400G] IEEE P802.3bs Approved!". IEEE 802.3bs Task Force. Archived from the original on June 12, 2018. Retrieved December 14, 2017.
  50. "1BASE5 Medium Specification (StarLAN)". cs.nthu.edu.tw. December 28, 1996. Archived from the original on July 10, 2015. Retrieved November 11, 2014.
  51. IEEE 802.3 14. Twisted-pair medium attachment unit (MAU) and baseband medium, type 10BASE-T including type 10BASE-Te
  52. IEEE 802.3 25. Physical Medium Dependent (PMD) sublayer and baseband medium, type 100BASE-TX
  53. IEEE 802.3 40. Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium, type 1000BASE-T
  54. IEEE 802.3 4.3 Interfaces to/from adjacent layers
  55. "802.3-2012 – IEEE Standard for Ethernet". IEEE. IEEE Standards Association. December 28, 2012. Archived from the original (PDF) on February 23, 2014. Retrieved February 8, 2014.
  56. "Layer 2 Switching Loops in Network Explained". ComputerNetworkingNotes. Archived from the original on January 8, 2022. Retrieved January 8, 2022.
  57. IEEE 802.3 8.2 MAU functional specifications
  58. IEEE 802.3 8.2.1.5 Jabber function requirements
  59. IEEE 802.3 12.4.3.2.3 Jabber function
  60. IEEE 802.3 9.6.5 MAU Jabber Lockup Protection
  61. IEEE 802.3 27.3.2.1.4 Timers
  62. IEEE 802.3 41.2.2.1.4 Timers
  63. IEEE 802.3 27.3.1.7 Receive jabber functional requirements
  64. IEEE 802.1 Table C-1—Largest frame base values
  65. "3.1.1 Packet format", 802.3-2012 - IEEE Standard for Ethernet (PDF), IEEE Standards Association, December 28, 2012, retrieved July 5, 2015
  66. "Troubleshooting Ethernet". Cisco. Archived from the original on March 3, 2021. Retrieved May 18, 2021.

Further reading

External links

Ethernet family of local area network technologies
Speeds
General
Organizations
Media
Historic
Applications
Transceivers
Interfaces
Internet access
Wired
Wireless PAN
Wireless LAN
Long range wireless
Basic computer components
Input devices
Pointing devices
Other
Output devices
Removable
data storage
Computer case
Ports
Current
Obsolete
Related
Categories:
Ethernet Add topic