Misplaced Pages

Epichlorohydrin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Epichlorhydrin)
(±)-Epichlorohydrin
Epichlorohydrin skeletal structure
Epichlorohydrin skeletal structure
(R)-Epichlorohydrin
(S)-Epichlorohydrin
Names
Preferred IUPAC name 2-(Chloromethyl)oxirane
Other names (Chloromethyl)oxirane
Epichlorohydrin
1-Chloro-2,3-epoxypropane
γ-Chloropropylene oxide
Glycidyl chloride
ECH
Identifiers
CAS Number
3D model (JSmol)
Beilstein Reference 79785
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.128 Edit this at Wikidata
EC Number
  • 203-439-8
Gmelin Reference 164180
KEGG
PubChem CID
RTECS number
  • TX4900000
UNII
UN number 2023
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C3H5ClO/c4-1-3-2-5-3/h3H,1-2H2Key: BRLQWZUYTZBJKN-UHFFFAOYSA-N
  • InChI=1/C3H5ClO/c4-1-3-2-5-3/h3H,1-2H2Key: BRLQWZUYTZBJKN-UHFFFAOYAY
SMILES
  • ClCC1CO1
Properties
Chemical formula C3H5ClO
Molar mass 92.52 g/mol
Appearance colorless liquid
Odor garlic or chloroform-like
Density 1.1812 g/cm
Melting point −25.6 °C (−14.1 °F; 247.6 K)
Boiling point 117.9 °C (244.2 °F; 391.0 K)
Solubility in water 7% (20°C)
Vapor pressure 13 mmHg (20°C)
Hazards
GHS labelling:
Pictograms GHS02: FlammableGHS05: CorrosiveGHS06: ToxicGHS07: Exclamation markGHS08: Health hazard
Signal word Danger
Hazard statements H226, H301, H311, H314, H317, H331, H350
Precautionary statements P201, P202, P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P272, P280, P281, P301+P310, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P308+P313, P310, P311, P312, P321, P322, P330, P333+P313, P361, P363, P370+P378, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
3 3 2
Flash point 32 °C (90 °F; 305 K)
Explosive limits 3.8–21%
Lethal dose or concentration (LD, LC):
LC50 (median concentration) 3617 ppm (rat, 1 hr)
2165 ppm (rat, 1 hr)
250 ppm (rat, 8 hr)
244 ppm (rat, 8 hr)
360 ppm (rat, 6 hr)
LCLo (lowest published) 250 ppm (rat, 4 hr)
NIOSH (US health exposure limits):
PEL (Permissible) TWA 5 ppm (19 mg/m)
REL (Recommended) Carcinogen
IDLH (Immediate danger) Ca
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Epichlorohydrin (abbreviated ECH) is an organochlorine compound and an epoxide. Despite its name, it is not a halohydrin. It is a colorless liquid with a pungent, garlic-like odor, moderately soluble in water, but miscible with most polar organic solvents. It is a chiral molecule generally existing as a racemic mixture of right-handed and left-handed enantiomers. Epichlorohydrin is a highly reactive electrophilic compound and is used in the production of glycerol, plastics, epoxy glues and resins, epoxy diluents and elastomers.

Production

Epichlorohydrin is traditionally manufactured from allyl chloride in two steps, beginning with the addition of hypochlorous acid, which affords a mixture of two isomeric alcohols:

In the second step, this mixture is treated with base to give the epoxide:

In this way, more than 800,000 tons (1997) of epichlorohydrin are produced annually.

Glycerol routes

Epichlorohydrin was first described in 1848 by Marcellin Berthelot. The compound was isolated during studies on reactions between glycerol and gaseous hydrogen chloride.

Reminiscent of Berthelot's experiment, glycerol-to-epichlorohydrin (GTE) plants have been commercialized. This technology capitalizes on the availability of cheap glycerol from biofuels processing. In the process developed by Dow Chemical, glycerol undergoes two substitution reactions when treated with hydrogen chloride in the presence of a carboxylic acid catalyst. This is the same intermediate formed in the allyl chloride/hypochlorous acid process, and is likewise then treated with base to form epichlorohydrin.

Other routes

Routes that involve fewer chlorinated intermediates have continued to attract interest. One such process entails epoxidation of allyl chloride.

Applications

Glycerol and epoxy resins synthesis

Epichlorohydrin is mainly converted to bisphenol A diglycidyl ether, a building block in the manufacture of epoxy resins. It is also a precursor to monomers for other resins and polymers. Another usage is the conversion to synthetic glycerol. However, the rapid increase in biodiesel production, where glycerol is a waste product, has led to a glut of glycerol on the market, rendering this process uneconomical. Synthetic glycerol is now used only in sensitive pharmaceutical, and biotech applications where quality standards are very high.

Minor and niche applications

Epichlorohydrin is a versatile precursor in the synthesis of many organic compounds. For example, it is converted to glycidyl nitrate, an energetic binder used in explosive and propellant compositions. The epichlorohydrin is reacted with an alkali nitrate, such as sodium nitrate, producing glycidyl nitrate and alkali chloride. It is used as a solvent for cellulose, resins, and paints, and it has found use as an insect fumigant.

Polymers made from epichlorohydrin, e.g., polyamide-epichlorohydrin resins, are used in paper reinforcement and in the food industry to manufacture tea bags, coffee filters, and sausage/salami casings as well as with water purification.

An important biochemical application of epichlorohydrin is its use as crosslinking agent for the production of Sephadex size-exclusion chromatographic resins from dextrans.

Safety

Epichlorohydrin is classified by several international health research agencies and groups as a probable or likely carcinogen in humans. Prolonged oral consumption of high levels of epichlorohydrin could result in stomach problems and an increased risk of cancer. Occupational exposure to epichlorohydrin via inhalation could result in lung irritation and an increased risk of lung cancer.

References

  1. Merck Index, 12th Edition, 3648.
  2. ^ NIOSH Pocket Guide to Chemical Hazards. "#0254". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ "Epichlorohydrin". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. "EPA consumer factsheet". Epa.gov. Retrieved 2011-12-02.
  5. Braun, G. (1936). "Epichlorohydrin and Epybromohydrin". Organic Syntheses. 16: 30. doi:10.15227/orgsyn.016.0030.
  6. Guenter Sienel; Robert Rieth; Kenneth T. Rowbottom. "Epoxides". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_531. ISBN 978-3527306732.
  7. Ludger Krähling; Jürgen Krey; Gerald Jakobson; Johann Grolig; Leopold Miksche. "Allyl Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_425. ISBN 978-3527306732.
  8. Berthelot, Marcellin (1854). "Sur les combinaisons de la glycérine avec les acides et sur la synthèse des principes immédiats des graisses animaux". Ann. Chim. Phys. Série 3. 41: 216–319. Archived from the original on 2015-04-02. Retrieved 2015-03-02.
  9. Doris de Guzman (2011-01-20). "Growing glycerine-to-ECH plants". ICIS Green Chemicals. Archived from the original on 2012-04-19. Retrieved 2012-03-05.
  10. Bell, Bruce M.; Briggs, John R.; Campbell, Robert M.; Chambers, Susanne M.; Gaarenstroom, Phil D.; Hippler, Jeffrey G.; Hook, Bruce D.; Kearns, Kenneth; et al. (2008). "Glycerin as a Renewable Feedstock for Epichlorohydrin Production. The GTE Process" (PDF). CLEAN - Soil, Air, Water. 36 (8): 657. Bibcode:2008CSAW...36..657B. doi:10.1002/clen.200800067. Archived from the original (full text reprint) on 2012-07-18. Retrieved 2012-03-05.
  11. Jun Li; Gongda Zhao; Shuang Gao; Ying Lv; Jian Li; Zuwei Xi (2006). "Epoxidation of Allyl Chloride to Epichlorohydrin by a Reversible Supported Catalyst with H2O2 under Solvent-Free Conditions". Org. Process Res. Dev. 10 (5): 876–880. doi:10.1021/op060108k.
  12. Pham, Ha Q.; Marks, Maurice J. (2012). "Epoxy Resins". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a09_547.pub2. ISBN 978-3-527-30673-2.
  13. Taylor, Phil (16 October 2008). "Synthetic glycerine is back (but never really went away)!". In-Pharma Technologist. Retrieved 29 November 2018.
  14. Gould, R.F. Advanced Propellant Chemistry, ACS Chemistry Series 54, 1966
  15. "Suburban Water Testing Labs:Epichlorohydrin Fact Sheet". H2otest.com. Archived from the original on 2012-04-05. Retrieved 2011-12-02.
  16. "Government of Canada Chemical Substances: Oxirane,(chloromethyl)-(Epichlorohydrin) CAS Registry Number 106-89-8". 13 February 2008. Retrieved 2013-05-07.
  17. "Size Exclusion Chromatography | Cytiva (cytivalifesciences.com)". Size Exclusion Chromatography | Cytiva (cytivalifesciences.com). cytivalifesciences.com. Retrieved 2024-07-01.
  18. "EPA Integrated Risk Information System: Epichlorohydrin (CASRN 106-89-8)". Retrieved 2013-05-07.
  19. "Government of Canada: Screening Assessment for Epichlorohydrin". 27 January 2010. Retrieved 2013-05-07.
  20. "NIOSH Pocket Guide to Chemical Hazards - Epichlorohydrin". Retrieved 2013-09-20.
  21. "Basic Information about Epichlorohydrin in Drinking Water". Retrieved 2013-05-07.
  22. "Government of Canada: Screening Assessment for Epichlorohydrin". 27 January 2010. Retrieved 2013-05-07.
Categories:
Epichlorohydrin Add topic