Misplaced Pages

Disodium helide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Disodium helide
Identifiers
3D model (JSmol)
InChI
  • InChI=1S/He.2NaKey: JTZHEFJRNNBIOK-UHFFFAOYSA-N
SMILES
  • ..
Properties
Chemical formula HeNa2
Molar mass 49.982141 g·mol
Structure
Crystal structure Fluorite, cF12
Space group Fm3m, #225
Lattice constant a = 3.95 Å at 300 GPa
Related compounds
Other cations Lithium helium
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Disodium helide (Na2He) is a compound of helium and sodium that is stable at high pressures above 113 gigapascals (1,130,000 bar). It was first predicted using the USPEX crystal structure prediction algorithm and then synthesised in 2016.

Synthesis

Na2He was predicted to be thermodynamically stable over 160 GPa and dynamically stable over 100 GPa. This means it should be possible to form at the higher pressure and then decompress to 100 GPa, but below that it would decompose. Compared with other binary compounds of other elements and helium, it was predicted to be stable at the lowest pressure of any such combination. This also means, for example, that a helium-potassium compound is predicted to require much higher pressures of the order of terapascals.

The material was synthesized by putting tiny plates of sodium in a diamond anvil cell along with helium at 1600 bar and then compressing to 130 GPa and heating to 1,500 K with a laser. Disodium helide is predicted to be an insulator and transparent. At 200 GPa the sodium atoms have a Bader charge of +0.599, the helium charge is −0.174, and the two-electron spots are each near −0.511. This phase could be called disodium helium electride. Disodium helide melts at a high temperature near 1,500 K, much higher than the melting point of sodium. When decompressed, it can keep its form as low as 113 GPa. As pressure increases, the sodium is predicted to gain more positive charge, the helium to lose negative charge and the free electron density to increase. Energy is compensated by the relative shrinking of the helium atoms and the space for electrons.

Structure

Disodium helide has a cubic crystal structure, resembling that of fluorite. At 300 GPa the edge of a unit cell of the crystal has a = 3.95 Å. Each unit cell contains four helium atoms on the centre of the cube faces and corners, and eight sodium atoms at coordinates halfway between the center and each corner. Electron pairs (2e) are positioned on each edge and the centre of the unit cell. Each pair of electrons is spin paired. The presence of these isolated electrons makes this an electride. The helium atoms do not participate in any bonding; however, the electron pairs can be considered as an eight-centre two-electron bond.

Footnotes

  1. Each face is shared by two cells, each edge is shared by four cells, and each corner is shared by eight cells.

References

  1. ^ Wang, Hui-Tian; Boldyrev, Alexander I.; Popov, Ivan A.; Konôpková, Zuzana; Prakapenka, Vitali B.; Zhou, Xiang-Feng; Dronskowski, Richard; Deringer, Volker L.; Gatti, Carlo; Zhu, Qiang; Qian, Guang-Rui; Saleh, Gabriele; Lobanov, Sergey; Stavrou, Elissaios; Goncharov, Alexander F.; Oganov, Artem R.; Dong, Xiao (May 2017). "A stable compound of helium and sodium at high pressure – Supplementary Information table 5". Nature Chemistry. 9 (5): 440–445. arXiv:1309.3827. Bibcode:2017NatCh...9..440D. doi:10.1038/nchem.2716. PMID 28430195. S2CID 20459726.
  2. "Under Pressure, Helium Stops Being a Bystander". insidescience.org. 2018-03-28. Retrieved 2020-11-14. Then, in 2017, researchers synthesized a stable compound from helium and sodium known as disodium helide under the kinds of high pressures seen within gas giants, suggesting this compound might be found in nature and not just in labs.
  3. Saleh, Gabriele; Dong, Xiao; Oganov, Artem; Gatti, Carlo; Qian, Guang-rui; Zhu, Qiang; Zhou, Xiang-Feng; Wang, Hiu-tian (5 August 2014). "Stable Compound of Helium and Sodium at High Pressure". Acta Crystallographica Section A. 70 (a1): C617. arXiv:1309.3827. doi:10.1107/S2053273314093826.
  4. ^ Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; Stavrou, Elissaios; Lobanov, Sergey; Saleh, Gabriele; Qian, Guang-Rui; Zhu, Qiang; Gatti, Carlo; Deringer, Volker L.; Dronskowski, Richard; Zhou, Xiang-Feng; Prakapenka, Vitali B.; Konôpková, Zuzana; Popov, Ivan A.; Boldyrev, Alexander I.; Wang, Hui-Tian (6 February 2017). "A stable compound of helium and sodium at high pressure". Nature Chemistry. 9 (5): 440–445. arXiv:1309.3827. Bibcode:2017NatCh...9..440D. doi:10.1038/nchem.2716. PMID 28430195. S2CID 20459726.
Noble gas compounds
Helium compounds
Neon compounds
Argon compounds
Krypton compounds
Xenon compounds
Xe(0)
Xe(I)
Xe(II)
Xe(IV)
Xe(VI)
Xe(VIII)
Radon compounds
Rn(II)
Rn(IV)
Rn(VI)
Oganesson compounds
(predicted)
Og(0)
  • Og2
  • OgH
Og(II)
  • OgF2
  • OgCl2
  • OgO
Og(IV)
  • OgF4
  • OgO2
  • OgTs4
Og(VI)
  • OgF6
Hypothetical compound
Sodium compounds
Inorganic
Halides
Chalcogenides
Pnictogenides
Oxyhalides
Oxychalcogenides
Oxypnictogenides
Others
Organic
Categories: