Misplaced Pages

Cantic 6-cube

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Shape in six-dimensional geometry
Cantic 6-cube
Truncated 6-demicube

D6 Coxeter plane projection
Type uniform polypeton
Schläfli symbol t0,1{3,3}
h2{4,3}
Coxeter-Dynkin diagram =
5-faces 76
4-faces 636
Cells 2080
Faces 3200
Edges 2160
Vertices 480
Vertex figure ( )v
Coxeter groups D6,
Properties convex

In six-dimensional geometry, a cantic 6-cube (or a truncated 6-demicube) is a uniform 6-polytope.

Alternate names

  • Truncated 6-demicube/demihexeract (Acronym thax) (Jonathan Bowers)

Cartesian coordinates

The Cartesian coordinates for the 480 vertices of a cantic 6-cube centered at the origin and edge length 6√2 are coordinate permutations:

(±1,±1,±3,±3,±3,±3)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph
Dihedral symmetry
Coxeter plane D6 D5
Graph
Dihedral symmetry
Coxeter plane D4 D3
Graph
Dihedral symmetry
Coxeter plane A5 A3
Graph
Dihedral symmetry

Related polytopes

Dimensional family of cantic n-cubes
n 3 4 5 6 7 8
Symmetry

=

=

=

=

=

=
Cantic
figure
Coxeter
=

=

=

=

=

=
Schläfli h2{4,3} h2{4,3} h2{4,3} h2{4,3} h2{4,3} h2{4,3}

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:

D6 polytopes

h{4,3}

h2{4,3}

h3{4,3}

h4{4,3}

h5{4,3}

h2,3{4,3}

h2,4{4,3}

h2,5{4,3}

h3,4{4,3}

h3,5{4,3}

h4,5{4,3}

h2,3,4{4,3}

h2,3,5{4,3}

h2,4,5{4,3}

h3,4,5{4,3}

h2,3,4,5{4,3}

Notes

  1. Klitizing, (x3x3o *b3o3o3o – thax)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". x3x3o *b3o3o3o – thax

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Category:
Cantic 6-cube Add topic