Misplaced Pages

Cantellated 5-cell

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

5-cell

Cantellated 5-cell

Cantitruncated 5-cell
Orthogonal projections in A4 Coxeter plane

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation, up to edge-planing) of the regular 5-cell.

Cantellated 5-cell

Cantellated 5-cell

Schlegel diagram with
octahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,2{3,3,3}
rr{3,3,3}
Coxeter diagram
Cells 20 5 (3.4.3.4)
5 (3.3.3.3)
10 (3.4.4)
Faces 80 50{3}
30{4}
Edges 90
Vertices 30
Vertex figure
Square wedge
Symmetry group A4, , order 120
Properties convex, isogonal
Uniform index 3 4 5
Net

The cantellated 5-cell or small rhombated pentachoron is a uniform 4-polytope. It has 30 vertices, 90 edges, 80 faces, and 20 cells. The cells are 5 cuboctahedra, 5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra, 2 triangular prisms, and 1 octahedron; the vertex figure is a nonuniform triangular prism.

Alternate names

  • Cantellated pentachoron
  • Cantellated 4-simplex
  • (small) prismatodispentachoron
  • Rectified dispentachoron
  • Small rhombated pentachoron (Acronym: Srip) (Jonathan Bowers)

Configuration

Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.

Element fk f0 f1 f2 f3
f0 30 2 4 1 4 2 2 2 2 1
f1 2 30 * 1 2 0 0 2 1 0
2 * 60 0 1 1 1 1 1 1
f2 3 3 0 10 * * * 2 0 0
4 2 2 * 30 * * 1 1 0
3 0 3 * * 20 * 1 0 1
3 0 3 * * * 20 0 1 1
f3 12 12 12 4 6 4 0 5 * *
6 3 6 0 3 0 2 * 10 *
6 0 12 0 0 4 4 * * 5

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry

Wireframe

Ten triangular prisms colored green

Five octahedra colored blue

Coordinates

The Cartesian coordinates of the vertices of the origin-centered cantellated 5-cell having edge length 2 are:

Coordinates
( 2 2 5 ,   2 2 3 ,   1 3 ,   ± 1 ) {\displaystyle \left(2{\sqrt {\frac {2}{5}}},\ 2{\sqrt {\frac {2}{3}}},\ {\frac {1}{\sqrt {3}}},\ \pm 1\right)}
( 2 2 5 ,   2 2 3 ,   2 3 ,   0 ) {\displaystyle \left(2{\sqrt {\frac {2}{5}}},\ 2{\sqrt {\frac {2}{3}}},\ {\frac {-2}{\sqrt {3}}},\ 0\right)}
( 2 2 5 ,   0 ,   ± 3 ,   ± 1 ) {\displaystyle \left(2{\sqrt {\frac {2}{5}}},\ 0,\ \pm {\sqrt {3}},\ \pm 1\right)}
( 2 2 5 ,   0 ,   0 ,   ± 2 ) {\displaystyle \left(2{\sqrt {\frac {2}{5}}},\ 0,\ 0,\ \pm 2\right)}
( 2 2 5 ,   2 2 3 ,   2 3 ,   0 ) {\displaystyle \left(2{\sqrt {\frac {2}{5}}},\ -2{\sqrt {\frac {2}{3}}},\ {\frac {2}{\sqrt {3}}},\ 0\right)}
( 2 2 5 ,   2 2 3 ,   1 3 ,   ± 1 ) {\displaystyle \left(2{\sqrt {\frac {2}{5}}},\ -2{\sqrt {\frac {2}{3}}},\ {\frac {-1}{\sqrt {3}}},\ \pm 1\right)}
( 1 10 ,   3 2 ,   ± 3 ,   ± 1 ) {\displaystyle \left({\frac {-1}{\sqrt {10}}},\ {\sqrt {\frac {3}{2}}},\ \pm {\sqrt {3}},\ \pm 1\right)}
( 1 10 ,   3 2 ,   0 ,   ± 2 ) {\displaystyle \left({\frac {-1}{\sqrt {10}}},\ {\sqrt {\frac {3}{2}}},\ 0,\ \pm 2\right)}
( 1 10 ,   1 6 ,   2 3 ,   ± 2 ) {\displaystyle \left({\frac {-1}{\sqrt {10}}},\ {\frac {-1}{\sqrt {6}}},\ {\frac {2}{\sqrt {3}}},\ \pm 2\right)}
( 1 10 ,   1 6 ,   4 3 ,   0 ) {\displaystyle \left({\frac {-1}{\sqrt {10}}},\ {\frac {-1}{\sqrt {6}}},\ {\frac {-4}{\sqrt {3}}},\ 0\right)}
( 1 10 ,   5 6 ,   1 3 ,   ± 1 ) {\displaystyle \left({\frac {-1}{\sqrt {10}}},\ {\frac {-5}{\sqrt {6}}},\ {\frac {1}{\sqrt {3}}},\ \pm 1\right)}
( 1 10 ,   5 6 ,   2 3 ,   0 ) {\displaystyle \left({\frac {-1}{\sqrt {10}}},\ {\frac {-5}{\sqrt {6}}},\ {\frac {-2}{\sqrt {3}}},\ 0\right)}
( 3 2 5 ,   0 ,   0 ,   0 ) ± ( 0 ,   2 3 ,   2 3 ,   0 ) {\displaystyle \left(-3{\sqrt {\frac {2}{5}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt {\frac {2}{3}}},\ {\frac {2}{\sqrt {3}}},\ 0\right)}
( 3 2 5 ,   0 ,   0 ,   0 ) ± ( 0 ,   2 3 ,   1 3 ,   ± 1 ) {\displaystyle \left(-3{\sqrt {\frac {2}{5}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt {\frac {2}{3}}},\ {\frac {-1}{\sqrt {3}}},\ \pm 1\right)}

The vertices of the cantellated 5-cell can be most simply positioned in 5-space as permutations of:

(0,0,1,1,2)

This construction is from the positive orthant facet of the cantellated 5-orthoplex.

Related polytopes

The convex hull of two cantellated 5-cells in opposite positions is a nonuniform polychoron composed of 100 cells: three kinds of 70 octahedra (10 rectified tetrahedra, 20 triangular antiprisms, 40 triangular antipodiums), 30 tetrahedra (as tetragonal disphenoids), and 60 vertices. Its vertex figure is a shape topologically equivalent to a cube with a triangular prism attached to one of its square faces.


Vertex figure

Cantitruncated 5-cell

Cantitruncated 5-cell

Schlegel diagram with Truncated tetrahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,1,2{3,3,3}
tr{3,3,3}
Coxeter diagram
Cells 20 5 (4.6.6)
10 (3.4.4)
 5 (3.6.6)
Faces 80 20{3}
30{4}
30{6}
Edges 120
Vertices 60
Vertex figure
sphenoid
Symmetry group A4, , order 120
Properties convex, isogonal
Uniform index 6 7 8
Net

The cantitruncated 5-cell or great rhombated pentachoron is a uniform 4-polytope. It is composed of 60 vertices, 120 edges, 80 faces, and 20 cells. The cells are: 5 truncated octahedra, 10 triangular prisms, and 5 truncated tetrahedra. Each vertex is surrounded by 2 truncated octahedra, one triangular prism, and one truncated tetrahedron.

Configuration

Seen in a configuration matrix, all incidence counts between elements are shown. The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time.

Element fk f0 f1 f2 f3
f0 60 1 1 2 1 2 2 1 2 1 1
f1 2 30 * * 1 2 0 0 2 1 0
2 * 30 * 1 0 2 0 2 0 1
2 * * 60 0 1 1 1 1 1 1
f2 6 3 3 0 10 * * * 2 0 0
4 2 0 2 * 30 * * 1 1 0
6 0 3 3 * * 20 * 1 0 1
3 0 0 3 * * * 20 0 1 1
f3 24 12 12 12 4 6 4 0 5 * *
6 3 0 6 0 3 0 2 * 10 *
12 0 6 12 0 0 4 4 * * 5

Alternative names

  • Cantitruncated pentachoron
  • Cantitruncated 4-simplex
  • Great prismatodispentachoron
  • Truncated dispentachoron
  • Great rhombated pentachoron (Acronym: grip) (Jonathan Bowers)

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry

Stereographic projection with its 10 triangular prisms.

Cartesian coordinates

The Cartesian coordinates of an origin-centered cantitruncated 5-cell having edge length 2 are:

Coordinates
( 3 2 5 ,   ± 6 ,   ± 3 ,   ± 1 ) {\displaystyle \left(3{\sqrt {\frac {2}{5}}},\ \pm {\sqrt {6}},\ \pm {\sqrt {3}},\ \pm 1\right)}
( 3 2 5 ,   ± 6 ,   0 ,   ± 2 ) {\displaystyle \left(3{\sqrt {\frac {2}{5}}},\ \pm {\sqrt {6}},\ 0,\ \pm 2\right)}
( 3 2 5 ,   0 ,   0 ,   0 ) ± ( 0 ,   2 3 ,   5 3 ,   ± 1 ) {\displaystyle \left(3{\sqrt {\frac {2}{5}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt {\frac {2}{3}}},\ {\frac {5}{\sqrt {3}}},\ \pm 1\right)}
( 3 2 5 ,   0 ,   0 ,   0 ) ± ( 0 ,   2 3 ,   1 3 ,   ± 3 ) {\displaystyle \left(3{\sqrt {\frac {2}{5}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt {\frac {2}{3}}},\ {\frac {-1}{\sqrt {3}}},\ \pm 3\right)}
( 3 2 5 ,   0 ,   0 ,   0 ) ± ( 0 ,   2 3 ,   4 3 ,   ± 2 ) {\displaystyle \left(3{\sqrt {\frac {2}{5}}},\ 0,\ 0,\ 0\right)\pm \left(0,\ {\sqrt {\frac {2}{3}}},\ {\frac {-4}{\sqrt {3}}},\ \pm 2\right)}
( 1 10 ,   5 6 ,   5 3 ,   ± 1 ) {\displaystyle \left({\frac {1}{\sqrt {10}}},\ {\frac {5}{\sqrt {6}}},\ {\frac {5}{\sqrt {3}}},\ \pm 1\right)}
( 1 10 ,   5 6 ,   1 3 ,   ± 3 ) {\displaystyle \left({\frac {1}{\sqrt {10}}},\ {\frac {5}{\sqrt {6}}},\ {\frac {-1}{\sqrt {3}}},\ \pm 3\right)}
( 1 10 ,   5 6 ,   4 3 ,   ± 2 ) {\displaystyle \left({\frac {1}{\sqrt {10}}},\ {\frac {5}{\sqrt {6}}},\ {\frac {-4}{\sqrt {3}}},\ \pm 2\right)}
( 1 10 ,   3 2 ,   3 ,   ± 3 ) {\displaystyle \left({\frac {1}{\sqrt {10}}},\ -{\sqrt {\frac {3}{2}}},\ {\sqrt {3}},\ \pm 3\right)}
( 1 10 ,   3 2 ,   2 3 ,   0 ) {\displaystyle \left({\frac {1}{\sqrt {10}}},\ -{\sqrt {\frac {3}{2}}},\ -2{\sqrt {3}},\ 0\right)}
( 1 10 ,   7 6 ,   2 3 ,   ± 2 ) {\displaystyle \left({\frac {1}{\sqrt {10}}},\ {\frac {-7}{\sqrt {6}}},\ {\frac {2}{\sqrt {3}}},\ \pm 2\right)}
( 1 10 ,   7 6 ,   4 3 ,   0 ) {\displaystyle \left({\frac {1}{\sqrt {10}}},\ {\frac {-7}{\sqrt {6}}},\ {\frac {-4}{\sqrt {3}}},\ 0\right)}
( 2 2 5 ,   2 2 3 ,   4 3 ,   ± 2 ) {\displaystyle \left(-2{\sqrt {\frac {2}{5}}},\ 2{\sqrt {\frac {2}{3}}},\ {\frac {4}{\sqrt {3}}},\ \pm 2\right)}
( 2 2 5 ,   2 2 3 ,   1 3 ,   ± 3 ) {\displaystyle \left(-2{\sqrt {\frac {2}{5}}},\ 2{\sqrt {\frac {2}{3}}},\ {\frac {1}{\sqrt {3}}},\ \pm 3\right)}
( 2 2 5 ,   2 2 3 ,   5 3 ,   ± 1 ) {\displaystyle \left(-2{\sqrt {\frac {2}{5}}},\ 2{\sqrt {\frac {2}{3}}},\ {\frac {-5}{\sqrt {3}}},\ \pm 1\right)}
( 2 2 5 ,   0 ,   3 ,   ± 3 ) {\displaystyle \left(-2{\sqrt {\frac {2}{5}}},\ 0,\ {\sqrt {3}},\ \pm 3\right)}
( 2 2 5 ,   0 ,   2 3 ,   0 ) {\displaystyle \left(-2{\sqrt {\frac {2}{5}}},\ 0,\ -2{\sqrt {3}},\ 0\right)}
( 2 2 5 ,   4 2 3 ,   1 3 ,   ± 1 ) {\displaystyle \left(-2{\sqrt {\frac {2}{5}}},\ -4{\sqrt {\frac {2}{3}}},\ {\frac {1}{\sqrt {3}}},\ \pm 1\right)}
( 2 2 5 ,   4 2 3 ,   2 3 ,   0 ) {\displaystyle \left(-2{\sqrt {\frac {2}{5}}},\ -4{\sqrt {\frac {2}{3}}},\ {\frac {-2}{\sqrt {3}}},\ 0\right)}
( 9 10 ,   3 2 ,   ± 3 ,   ± 1 ) {\displaystyle \left({\frac {-9}{\sqrt {10}}},\ {\sqrt {\frac {3}{2}}},\ \pm {\sqrt {3}},\ \pm 1\right)}
( 9 10 ,   3 2 ,   0 ,   ± 2 ) {\displaystyle \left({\frac {-9}{\sqrt {10}}},\ {\sqrt {\frac {3}{2}}},\ 0,\ \pm 2\right)}
( 9 10 ,   1 6 ,   2 3 ,   ± 2 ) {\displaystyle \left({\frac {-9}{\sqrt {10}}},\ {\frac {-1}{\sqrt {6}}},\ {\frac {2}{\sqrt {3}}},\ \pm 2\right)}
( 9 10 ,   1 6 ,   4 3 ,   0 ) {\displaystyle \left({\frac {-9}{\sqrt {10}}},\ {\frac {-1}{\sqrt {6}}},\ {\frac {-4}{\sqrt {3}}},\ 0\right)}
( 9 10 ,   5 6 ,   1 3 ,   ± 1 ) {\displaystyle \left({\frac {-9}{\sqrt {10}}},\ {\frac {-5}{\sqrt {6}}},\ {\frac {1}{\sqrt {3}}},\ \pm 1\right)}
( 9 10 ,   5 6 ,   2 3 ,   0 ) {\displaystyle \left({\frac {-9}{\sqrt {10}}},\ {\frac {-5}{\sqrt {6}}},\ {\frac {-2}{\sqrt {3}}},\ 0\right)}

These vertices can be more simply constructed on a hyperplane in 5-space, as the permutations of:

(0,0,1,2,3)

This construction is from the positive orthant facet of the cantitruncated 5-orthoplex.

Related polytopes

A double symmetry construction can be made by placing truncated tetrahedra on the truncated octahedra, resulting in a nonuniform polychoron with 10 truncated tetrahedra, 20 hexagonal prisms (as ditrigonal trapezoprisms), two kinds of 80 triangular prisms (20 with D3h symmetry and 60 C2v-symmetric wedges), and 30 tetrahedra (as tetragonal disphenoids). Its vertex figure is topologically equivalent to the octahedron.


Vertex figure

Related 4-polytopes

These polytopes are art of a set of 9 Uniform 4-polytopes constructed from the Coxeter group.

Name 5-cell truncated 5-cell rectified 5-cell cantellated 5-cell bitruncated 5-cell cantitruncated 5-cell runcinated 5-cell runcitruncated 5-cell omnitruncated 5-cell
Schläfli
symbol
{3,3,3}
3r{3,3,3}
t{3,3,3}
3t{3,3,3}
r{3,3,3}
2r{3,3,3}
rr{3,3,3}
r2r{3,3,3}
2t{3,3,3} tr{3,3,3}
t2r{3,3,3}
t0,3{3,3,3} t0,1,3{3,3,3}
t0,2,3{3,3,3}
t0,1,2,3{3,3,3}
Coxeter
diagram






Schlegel
diagram
A4
Coxeter plane
Graph
A3 Coxeter plane
Graph
A2 Coxeter plane
Graph

References

  1. Klitzing, Richard. "o3x4x3o - deca".
  2. Klitzing, Richard. "x3x4x3o - grip".
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 1. Convex uniform polychora based on the pentachoron - Model 4, 7, George Olshevsky.
  • Klitzing, Richard. "4D uniform polytopes (polychora)". x3o3x3o - srip, x3x3x3o - grip
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Category:
Cantellated 5-cell Add topic