This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Isotopes of cadmium" – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this message) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Cd) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Naturally occurring cadmium (48Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives. The two natural radioactive isotopes are Cd (beta decay, half-life is 8.04 × 10 years) and Cd (two-neutrino double beta decay, half-life is 2.8 × 10 years). The other three are Cd, Cd (double electron capture), and Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—Cd, Cd, and Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are Cd with a half-life of 462.6 days, and Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known meta states, with the most stable being Cd (t1/2 14.1 years), Cd (t1/2 44.6 days) and Cd (t1/2 3.36 hours).
The known isotopes of cadmium range in atomic mass from 94.950 u (Cd) to 131.946 u (Cd). The primary decay mode before the second most abundant stable isotope, Cd, is electron capture and the primary modes after are beta emission and electron capture. The primary decay product before Cd is element 47 (silver) and the primary product after is element 49 (indium).
A 2021 study has shown at high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation.
List of isotopes
Nuclide |
Z | N | Isotopic mass (Da) |
Half-life |
Decay mode |
Daughter isotope |
Spin and parity |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
Cd | 48 | 46 | 93.95659(54)# | 80# ms |
0+ | ||||||||||||||
Cd | 48 | 47 | 94.94948(61)# | 32(3) ms | β (95.4%) | Ag | 9/2+# | ||||||||||||
β, p (4.6%) | Pd | ||||||||||||||||||
Cd | 48 | 48 | 95.94034(44)# | 1.003(47) s | β (98.4%) | Ag | 0+ | ||||||||||||
β, p (1.6%) | Pd | ||||||||||||||||||
Cd | 6000(1400) keV | 511(26) ms | β (84.6%) | Ag | 16+ | ||||||||||||||
β, p (15.4%) | Pd | ||||||||||||||||||
Cd | 5605(5) keV | 198(18) ns | IT | Cd | (12−,13−) | ||||||||||||||
Cd | 48 | 49 | 96.93480(45) | 1.16(5) s | β (92.6%) | Ag | (9/2+) | ||||||||||||
β, p (7.4%) | Pd | ||||||||||||||||||
Cd | 1245.1(2) keV | 730(70) μs | IT | Cd | (1/2−) | ||||||||||||||
Cd | 2620(580) keV | 3.86(6) s | β (74.9%) | Ag | (25/2+) | ||||||||||||||
β, p (25.1%) | Pd | ||||||||||||||||||
Cd | 48 | 50 | 97.927389(56) | 9.29(10) s | β (>99.97%) | Ag | 0+ | ||||||||||||
β, p (<0.029%) | Ag | ||||||||||||||||||
Cd | 2428.3(4) keV | 154(16) ns | IT | Cd | (8+) | ||||||||||||||
Cd | 6635(2) keV | 224(5) ns | IT | Cd | (12+) | ||||||||||||||
Cd | 48 | 51 | 98.9249258(17) | 17(1) s | β (99.79%) | Ag | 5/2+# | ||||||||||||
β, p (0.21%) | Pd | ||||||||||||||||||
β, α (<10%) | Rh | ||||||||||||||||||
Cd | 48 | 52 | 99.9203488(18) | 49.1(5) s | β | Ag | 0+ | ||||||||||||
Cd | 48 | 53 | 100.9185862(16) | 1.36(5) min | β | Ag | 5/2+ | ||||||||||||
Cd | 48 | 54 | 101.9144818(18) | 5.5(5) min | β | Ag | 0+ | ||||||||||||
Cd | 48 | 55 | 102.9134169(19) | 7.3(1) min | β | Ag | 5/2+ | ||||||||||||
Cd | 48 | 56 | 103.9098562(18) | 57.7(10) min | β | Ag | 0+ | ||||||||||||
Cd | 48 | 57 | 104.9094639(15) | 55.5(4) min | β | Ag | 5/2+ | ||||||||||||
Cd | 2517.6(5) keV | 4.5(5) μs | IT | Cd | (21/2+) | ||||||||||||||
Cd | 48 | 58 | 105.9064598(12) | Observationally Stable | 0+ | 0.01245(22) | |||||||||||||
Cd | 48 | 59 | 106.9066120(18) | 6.50(2) h | β | Ag | 5/2+ | ||||||||||||
Cd | 48 | 60 | 107.9041836(12) | Observationally Stable | 0+ | 0.00888(11) | |||||||||||||
Cd | 48 | 61 | 108.9049867(16) | 461.3(5) d | EC | Ag | 5/2+ | ||||||||||||
Cd | 59.60(7) keV | 11.8(16) μs | IT | Cd | 1/2+ | ||||||||||||||
Cd | 463.10(11) keV | 10.6(4) μs | IT | Cd | 11/2− | ||||||||||||||
Cd | 48 | 62 | 109.90300747(41) | Stable | 0+ | 0.12470(61) | |||||||||||||
Cd | 48 | 63 | 110.90418378(38) | Stable | 1/2+ | 0.12795(12) | |||||||||||||
Cd | 396.214(21) keV | 48.50(9) min | IT | Cd | 11/2− | ||||||||||||||
Cd | 48 | 64 | 111.90276390(27) | Stable | 0+ | 0.24109(7) | |||||||||||||
Cd | 48 | 65 | 112.90440811(26) | 8.04(5)×10 y | β | In | 1/2+ | 0.12227(7) | |||||||||||
Cd | 263.54(3) keV | 13.89(11) y | β (99.90%) | In | 11/2− | ||||||||||||||
IT (0.0964%) | Cd | ||||||||||||||||||
Cd | 48 | 66 | 113.90336500(30) | Observationally Stable | 0+ | 0.28754(81) | |||||||||||||
Cd | 48 | 67 | 114.90543743(70) | 53.46(5) h | β | In | 1/2+ | ||||||||||||
Cd | 181.0(5) keV | 44.56(24) d | β | In | 11/2− | ||||||||||||||
Cd | 48 | 68 | 115.90476323(17) | 2.69(9)×10 y | ββ | Sn | 0+ | 0.07512(54) | |||||||||||
Cd | 48 | 69 | 116.9072260(11) | 2.503(5) h | β | In | 1/2+ | ||||||||||||
Cd | 136.4(2) keV | 3.441(9) h | β | In | 11/2− | ||||||||||||||
Cd | 48 | 70 | 117.906922(21) | 50.3(2) min | β | In | 0+ | ||||||||||||
Cd | 48 | 71 | 118.909847(40) | 2.69(2) min | β | In | 1/2+ | ||||||||||||
Cd | 146.54(11) keV | 2.20(2) min | β | In | 11/2− | ||||||||||||||
Cd | 48 | 72 | 119.9098681(40) | 50.80(21) s | β | In | 0+ | ||||||||||||
Cd | 48 | 73 | 120.9129637(21) | 13.5(3) s | β | In | 3/2+ | ||||||||||||
Cd | 214.86(15) keV | 8.3(8) s | β | In | 11/2− | ||||||||||||||
Cd | 48 | 74 | 121.9134591(25) | 5.98(10) s | β | In | 0+ | ||||||||||||
Cd | 48 | 75 | 122.9168925(29) | 2.10(2) s | β | In | 3/2+ | ||||||||||||
Cd | 143(4) keV | 1.82(3) s | β (?%) | In | 11/2− | ||||||||||||||
IT (?%) | Cd | ||||||||||||||||||
Cd | 48 | 76 | 123.9176598(28) | 1.25(2) s | β | In | 0+ | ||||||||||||
Cd | 48 | 77 | 124.9212576(31) | 680(40) ms | β | In | 3/2+ | ||||||||||||
Cd | 186(4) keV | 480(30) ms | β | In | 11/2− | ||||||||||||||
Cd | 1648(4) keV | 19(3) μs | IT | Cd | (19/2+) | ||||||||||||||
Cd | 48 | 78 | 125.9224303(25) | 512(5) ms | β | In | 0+ | ||||||||||||
Cd | 48 | 79 | 126.9262033(67) | 480(100) ms | β | In | 3/2+ | ||||||||||||
Cd | 285(8) keV | 360(40) ms | β | In | 11/2− | ||||||||||||||
Cd | 1845(8) keV | 17.5(3) μs | IT | Cd | (19/2+) | ||||||||||||||
Cd | 48 | 80 | 127.9278168(69) | 246(2) ms | β | In | 0+ | ||||||||||||
Cd | 1870.5(3) keV | 270(7) ns | IT | Cd | (5−) | ||||||||||||||
Cd | 2714.6(4) keV | 3.56(6) μs | IT | Cd | (10+) | ||||||||||||||
Cd | 4286.6(15) keV | 6.3(8) ms | IT | Cd | (15−) | ||||||||||||||
Cd | 48 | 81 | 128.9322356(57) | 147(3) ms | β (?%) | In | 11/2− | ||||||||||||
β, n (?%) | In | ||||||||||||||||||
Cd | 343(8) keV | 157(8) ms | β (?%) | In | 3/2+ | ||||||||||||||
β, n (?%) | In | ||||||||||||||||||
Cd | 2283(8) keV | 3.6(2) ms | IT | Cd | (21/2+) | ||||||||||||||
Cd | 48 | 82 | 129.934388(24) | 126.8(18) ms | β (96.5%) | In | 0+ | ||||||||||||
β, n (3.5%) | In | ||||||||||||||||||
Cd | 2129.6(10) keV | 240(16) ns | IT | Cd | (8+) | ||||||||||||||
Cd | 48 | 83 | 130.940728(21) | 98(2) ms | β (96.5%) | In | 7/2−# | ||||||||||||
β, n (3.5%) | In | ||||||||||||||||||
Cd | 48 | 84 | 131.945823(64) | 84(5) ms | β, n (60%) | In | 0+ | ||||||||||||
β (40%) | In | ||||||||||||||||||
Cd | 48 | 85 | 132.95261(22)# | 61(6) ms | β (?%) | In | 7/2−# | ||||||||||||
β, n (?%) | In | ||||||||||||||||||
Cd | 48 | 86 | 133.95764(32)# | 65(15) ms | β | In | 0+ | ||||||||||||
This table header & footer: |
- Cd – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- Bold half-life – nearly stable, half-life longer than age of universe.
-
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission p: Proton emission - Bold italics symbol as daughter – Daughter product is nearly stable.
- Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- Believed to decay by ββ to Pd with a half-life over 1.1×10 years
- Believed to decay by ββ to Pd with a half-life over 4.1×10 years
- ^ Fission product
- ^ Primordial radionuclide
- Believed to undergo ββ decay to Sn with a half-life over 9.2×10 years
- Hyperdeformation is predicted to be found in Cd.
Cadmium-113m
t½ (year) |
Yield (%) |
Q (keV) |
βγ | |
---|---|---|---|---|
Eu | 4.76 | 0.0803 | 252 | βγ |
Kr | 10.76 | 0.2180 | 687 | βγ |
Cd | 14.1 | 0.0008 | 316 | β |
Sr | 28.9 | 4.505 | 2826 | β |
Cs | 30.23 | 6.337 | 1176 | βγ |
Sn | 43.9 | 0.00005 | 390 | βγ |
Sm | 94.6 | 0.5314 | 77 | β |
Cadmium-113m is a cadmium radioisotope and nuclear isomer with a half-life of 14.1 years. In a normal thermal reactor, it has a very low fission product yield, plus its large neutron capture cross section means that most of even the small amount produced is destroyed in the course of the nuclear fuel's burnup; thus, this isotope is not a significant contributor to nuclear waste.
Fast fission or fission of some heavier actinides will produce Cd at higher yields.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Cadmium". CIAAW. 2013.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Ratié, Gildas; Chrastný, Vladislav; Guinoiseau, Damien; Marsac, Rémi; Vaňková, Zuzana; Komárek, Michael (2021-06-01). "Cadmium Isotope Fractionation during Complexation with Humic Acid". Environmental Science & Technology. 55 (11): 7430–7444. Bibcode:2021EnST...55.7430R. doi:10.1021/acs.est.1c00646. ISSN 0013-936X. PMID 33970606. S2CID 234361430.
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap". Physical Review C. 108 (5). arXiv:2306.11505. doi:10.1103/PhysRevC.108.054301.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.