In mathematics, the Bretherton equation is a nonlinear partial differential equation introduced by Francis Bretherton in 1964:
with integer and While and denote partial derivatives of the scalar field
The original equation studied by Bretherton has quadratic nonlinearity, Nayfeh treats the case with two different methods: Whitham's averaged Lagrangian method and the method of multiple scales.
The Bretherton equation is a model equation for studying weakly-nonlinear wave dispersion. It has been used to study the interaction of harmonics by nonlinear resonance. Bretherton obtained analytic solutions in terms of Jacobi elliptic functions.
Variational formulations
The Bretherton equation derives from the Lagrangian density:
through the Euler–Lagrange equation:
The equation can also be formulated as a Hamiltonian system:
in terms of functional derivatives involving the Hamiltonian
- and
with the Hamiltonian density – consequently The Hamiltonian is the total energy of the system, and is conserved over time.
Notes
- ^ Bretherton (1964)
- Nayfeh (2004, §§5.8, 6.2.9 & 6.4.8)
- Drazin & Reid (2004, pp. 393–397)
- Hammack, J.L.; Henderson, D.M. (1993), "Resonant interactions among surface water waves", Annual Review of Fluid Mechanics, 25: 55–97, Bibcode:1993AnRFM..25...55H, doi:10.1146/annurev.fl.25.010193.000415
- Kudryashov (1991)
- Nayfeh (2004, §5.8)
- ^ Levandosky, S.P. (1998), "Decay estimates for fourth order wave equations", Journal of Differential Equations, 143 (2): 360–413, Bibcode:1998JDE...143..360L, doi:10.1006/jdeq.1997.3369
- Esfahani, A. (2011), "Traveling wave solutions for generalized Bretherton equation", Communications in Theoretical Physics, 55 (3): 381–386, Bibcode:2011CoTPh..55..381A, doi:10.1088/0253-6102/55/3/01, S2CID 250783550
References
- Bretherton, F.P. (1964), "Resonant interactions between waves. The case of discrete oscillations", Journal of Fluid Mechanics, 20 (3): 457–479, Bibcode:1964JFM....20..457B, doi:10.1017/S0022112064001355, S2CID 123193107
- Drazin, P.G.; Reid, W.H. (2004), Hydrodynamic stability (2nd ed.), Cambridge University Press, doi:10.1017/CBO9780511616938, ISBN 0-521-52541-1
- Kudryashov, N.A. (1991), "On types of nonlinear nonintegrable equations with exact solutions", Physics Letters A, 155 (4–5): 269–275, Bibcode:1991PhLA..155..269K, doi:10.1016/0375-9601(91)90481-M
- Nayfeh, A.H. (2004), Perturbation methods, Wiley–VCH Verlag, ISBN 0-471-39917-5