Misplaced Pages

Asymptotic dimension

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture. Asymptotic dimension has important applications in geometric analysis and index theory.

Formal definition

Let X {\displaystyle X} be a metric space and n 0 {\displaystyle n\geq 0} be an integer. We say that asdim ( X ) n {\displaystyle \operatorname {asdim} (X)\leq n} if for every R 1 {\displaystyle R\geq 1} there exists a uniformly bounded cover U {\displaystyle {\mathcal {U}}} of X {\displaystyle X} such that every closed R {\displaystyle R} -ball in X {\displaystyle X} intersects at most n + 1 {\displaystyle n+1} subsets from U {\displaystyle {\mathcal {U}}} . Here 'uniformly bounded' means that sup U U diam ( U ) < {\displaystyle \sup _{U\in {\mathcal {U}}}\operatorname {diam} (U)<\infty } .

We then define the asymptotic dimension asdim ( X ) {\displaystyle \operatorname {asdim} (X)} as the smallest integer n 0 {\displaystyle n\geq 0} such that asdim ( X ) n {\displaystyle \operatorname {asdim} (X)\leq n} , if at least one such n {\displaystyle n} exists, and define asdim ( X ) := {\displaystyle \operatorname {asdim} (X):=\infty } otherwise.

Also, one says that a family ( X i ) i I {\displaystyle (X_{i})_{i\in I}} of metric spaces satisfies asdim ( X ) n {\displaystyle \operatorname {asdim} (X)\leq n} uniformly if for every R 1 {\displaystyle R\geq 1} and every i I {\displaystyle i\in I} there exists a cover U i {\displaystyle {\mathcal {U}}_{i}} of X i {\displaystyle X_{i}} by sets of diameter at most D ( R ) < {\displaystyle D(R)<\infty } (independent of i {\displaystyle i} ) such that every closed R {\displaystyle R} -ball in X i {\displaystyle X_{i}} intersects at most n + 1 {\displaystyle n+1} subsets from U i {\displaystyle {\mathcal {U}}_{i}} .

Examples

  • If X {\displaystyle X} is a metric space of bounded diameter then asdim ( X ) = 0 {\displaystyle \operatorname {asdim} (X)=0} .
  • asdim ( R ) = asdim ( Z ) = 1 {\displaystyle \operatorname {asdim} (\mathbb {R} )=\operatorname {asdim} (\mathbb {Z} )=1} .
  • asdim ( R n ) = n {\displaystyle \operatorname {asdim} (\mathbb {R} ^{n})=n} .
  • asdim ( H n ) = n {\displaystyle \operatorname {asdim} (\mathbb {H} ^{n})=n} .

Properties

  • If Y X {\displaystyle Y\subseteq X} is a subspace of a metric space X {\displaystyle X} , then asdim ( Y ) asdim ( X ) {\displaystyle \operatorname {asdim} (Y)\leq \operatorname {asdim} (X)} .
  • For any metric spaces X {\displaystyle X} and Y {\displaystyle Y} one has asdim ( X × Y ) asdim ( X ) + asdim ( Y ) {\displaystyle \operatorname {asdim} (X\times Y)\leq \operatorname {asdim} (X)+\operatorname {asdim} (Y)} .
  • If A , B X {\displaystyle A,B\subseteq X} then asdim ( A B ) max { asdim ( A ) , asdim ( B ) } {\displaystyle \operatorname {asdim} (A\cup B)\leq \max\{\operatorname {asdim} (A),\operatorname {asdim} (B)\}} .
  • If f : Y X {\displaystyle f:Y\to X} is a coarse embedding (e.g. a quasi-isometric embedding), then asdim ( Y ) asdim ( X ) {\displaystyle \operatorname {asdim} (Y)\leq \operatorname {asdim} (X)} .
  • If X {\displaystyle X} and Y {\displaystyle Y} are coarsely equivalent metric spaces (e.g. quasi-isometric metric spaces), then asdim ( X ) = asdim ( Y ) {\displaystyle \operatorname {asdim} (X)=\operatorname {asdim} (Y)} .
  • If X {\displaystyle X} is a real tree then asdim ( X ) 1 {\displaystyle \operatorname {asdim} (X)\leq 1} .
  • Let f : X Y {\displaystyle f:X\to Y} be a Lipschitz map from a geodesic metric space X {\displaystyle X} to a metric space Y {\displaystyle Y} . Suppose that for every r > 0 {\displaystyle r>0} the set family { f 1 ( B r ( y ) ) } y Y {\displaystyle \{f^{-1}(B_{r}(y))\}_{y\in Y}} satisfies the inequality asdim n {\displaystyle \operatorname {asdim} \leq n} uniformly. Then asdim ( X ) asdim ( Y ) + n . {\displaystyle \operatorname {asdim} (X)\leq \operatorname {asdim} (Y)+n.} See
  • If X {\displaystyle X} is a metric space with asdim ( X ) < {\displaystyle \operatorname {asdim} (X)<\infty } then X {\displaystyle X} admits a coarse (uniform) embedding into a Hilbert space.
  • If X {\displaystyle X} is a metric space of bounded geometry with asdim ( X ) n {\displaystyle \operatorname {asdim} (X)\leq n} then X {\displaystyle X} admits a coarse embedding into a product of n + 1 {\displaystyle n+1} locally finite simplicial trees.

Asymptotic dimension in geometric group theory

Asymptotic dimension achieved particular prominence in geometric group theory after a 1998 paper of Guoliang Yu , which proved that if G {\displaystyle G} is a finitely generated group of finite homotopy type (that is with a classifying space of the homotopy type of a finite CW-complex) such that asdim ( G ) < {\displaystyle \operatorname {asdim} (G)<\infty } , then G {\displaystyle G} satisfies the Novikov conjecture. As was subsequently shown, finitely generated groups with finite asymptotic dimension are topologically amenable, i.e. satisfy Guoliang Yu's Property A introduced in and equivalent to the exactness of the reduced C*-algebra of the group.

  • If G {\displaystyle G} is a word-hyperbolic group then asdim ( G ) < {\displaystyle \operatorname {asdim} (G)<\infty } .
  • If G {\displaystyle G} is relatively hyperbolic with respect to subgroups H 1 , , H k {\displaystyle H_{1},\dots ,H_{k}} each of which has finite asymptotic dimension then asdim ( G ) < {\displaystyle \operatorname {asdim} (G)<\infty } .
  • asdim ( Z n ) = n {\displaystyle \operatorname {asdim} (\mathbb {Z} ^{n})=n} .
  • If H G {\displaystyle H\leq G} , where H , G {\displaystyle H,G} are finitely generated, then asdim ( H ) asdim ( G ) {\displaystyle \operatorname {asdim} (H)\leq \operatorname {asdim} (G)} .
  • For Thompson's group F we have a s d i m ( F ) = {\displaystyle asdim(F)=\infty } since F {\displaystyle F} contains subgroups isomorphic to Z n {\displaystyle \mathbb {Z} ^{n}} for arbitrarily large n {\displaystyle n} .
  • If G {\displaystyle G} is the fundamental group of a finite graph of groups A {\displaystyle \mathbb {A} } with underlying graph A {\displaystyle A} and finitely generated vertex groups, then

asdim ( G ) 1 + max v V Y asdim ( A v ) . {\displaystyle \operatorname {asdim} (G)\leq 1+\max _{v\in VY}\operatorname {asdim} (A_{v}).}

  • Mapping class groups of orientable finite type surfaces have finite asymptotic dimension.
  • Let G {\displaystyle G} be a connected Lie group and let Γ G {\displaystyle \Gamma \leq G} be a finitely generated discrete subgroup. Then a s d i m ( Γ ) < {\displaystyle asdim(\Gamma )<\infty } .
  • It is not known if O u t ( F n ) {\displaystyle Out(F_{n})} has finite asymptotic dimension for n > 2 {\displaystyle n>2} .

References

  1. Gromov, Mikhael (1993). "Asymptotic Invariants of Infinite Groups". Geometric Group Theory. London Mathematical Society Lecture Note Series. Vol. 2. Cambridge University Press. ISBN 978-0-521-44680-8.
  2. ^ Yu, G. (1998). "The Novikov conjecture for groups with finite asymptotic dimension". Annals of Mathematics. 147 (2): 325–355. doi:10.2307/121011. JSTOR 121011. S2CID 17189763.
  3. Bell, G.C.; Dranishnikov, A.N. (2006). "A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory". Transactions of the American Mathematical Society. 358 (11): 4749–64. doi:10.1090/S0002-9947-06-04088-8. MR 2231870.
  4. Roe, John (2003). Lectures on Coarse Geometry. University Lecture Series. Vol. 31. American Mathematical Society. ISBN 978-0-8218-3332-2.
  5. Dranishnikov, Alexander (2003). "On hypersphericity of manifolds with finite asymptotic dimension". Transactions of the American Mathematical Society. 355 (1): 155–167. doi:10.1090/S0002-9947-02-03115-X. MR 1928082.
  6. Dranishnikov, Alexander (2000). "Асимптотическая топология" [Asymptotic topology]. Uspekhi Mat. Nauk (in Russian). 55 (6): 71–16. doi:10.4213/rm334.
    Dranishnikov, Alexander (2000). "Asymptotic topology". Russian Mathematical Surveys. 55 (6): 1085–1129. arXiv:math/9907192. Bibcode:2000RuMaS..55.1085D. doi:10.1070/RM2000v055n06ABEH000334. S2CID 250889716.
  7. Yu, Guoliang (2000). "The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space". Inventiones Mathematicae. 139 (1): 201–240. Bibcode:2000InMat.139..201Y. CiteSeerX 10.1.1.155.1500. doi:10.1007/s002229900032. S2CID 264199937.
  8. Roe, John (2005). "Hyperbolic groups have finite asymptotic dimension". Proceedings of the American Mathematical Society. 133 (9): 2489–90. doi:10.1090/S0002-9939-05-08138-4. MR 2146189.
  9. Osin, Densi (2005). "Asymptotic dimension of relatively hyperbolic groups". International Mathematics Research Notices. 2005 (35): 2143–61. arXiv:math/0411585. doi:10.1155/IMRN.2005.2143. S2CID 16743152.
  10. Bell, G.; Dranishnikov, A. (2004). "On asymptotic dimension of groups acting on trees". Geometriae Dedicata. 103 (1): 89–101. arXiv:math/0111087. doi:10.1023/B:GEOM.0000013843.53884.77. S2CID 14631642.
  11. Bestvina, Mladen; Fujiwara, Koji (2002). "Bounded cohomology of subgroups of mapping class groups". Geometry & Topology. 6 (1): 69–89. arXiv:math/0012115. doi:10.2140/gt.2002.6.69. S2CID 11350501.
  12. Ji, Lizhen (2004). "Asymptotic dimension and the integral K-theoretic Novikov conjecture for arithmetic groups" (PDF). Journal of Differential Geometry. 68 (3): 535–544. doi:10.4310/jdg/1115669594.
  13. Vogtmann, Karen (2015). "On the geometry of Outer space". Bulletin of the American Mathematical Society. 52 (1): 27–46. doi:10.1090/S0273-0979-2014-01466-1. MR 3286480. Ch. 9.1

Further reading

Categories:
Asymptotic dimension Add topic