Misplaced Pages

Antiprotozoal

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Antiprotozoals) Class of pharmaceuticals used to treat protozoan infections
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Antiprotozoal" – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message)

Antiprotozoal agents (ATC code: ATC P01) is a class of pharmaceuticals used in treatment of protozoan infection.

A paraphyletic group, protozoans have little in common with each other. For example, Entamoeba histolytica, a unikont eukaryotic organism, is more closely related to Homo sapiens (humans), which also belongs to the unikont phylogenetic group, than it is to Naegleria fowleri, a "protozoan" bikont. As a result, agents effective against one pathogen may not be effective against another.

Antiprotozoal agents can be grouped by mechanism or by organism. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.

Overuse or misuse of antiprotozoals can lead to the development of antiprotozoal resistance.

Medical uses

Antiprotozoals are used to treat protozoal infections, which include amebiasis, giardiasis, cryptosporidiosis, microsporidiosis, malaria, babesiosis, trypanosomiasis, Chagas disease, leishmaniasis, and toxoplasmosis. Currently, many of the treatments for these infections are limited by their toxicity.

Outdated terminology

Protists were once considered protozoans, but of late the categorization of unicellar organisms has undergone rapid development, however in literature, including scientific, there tends to persist the usage of the term antiprotozoal when they really mean anti-protist. Protists are a supercategory of eukaryota which includes protozoa.

Mechanism

The mechanisms of antiprotozoal drugs differ significantly drug to drug. For example, it appears that eflornithine, a drug used to treat trypanosomiasis, inhibits ornithine decarboxylase, while the aminoglycoside antibiotic/antiprotozoals used to treat leishmaniasis are thought to inhibit protein synthesis.

Examples

References

  1. Cynthia R. L. Webster (15 June 2001). Clinical pharmacology. Teton NewMedia. pp. 86–. ISBN 978-1-893441-37-8. Retrieved 2 May 2010.
  2. Anthony J. Trevor; Bertram G. Katzung; Susan B. Masters (11 December 2007). Katzung & Trevor's pharmacology: examination & board review. McGraw-Hill Professional. pp. 435–. ISBN 978-0-07-148869-3. Retrieved 2 May 2010.
  3. Keen, E. C. (2013). "Beyond phage therapy: Virotherapy of protozoal diseases". Future Microbiology. 8 (7): 821–823. doi:10.2217/FMB.13.48. PMID 23841627.
  4. Hyman, P.; Atterbury, R.; Barrow, P. (2013). "Fleas and smaller fleas: Virotherapy for parasite infections". Trends in Microbiology. 21 (5): 215–220. doi:10.1016/j.tim.2013.02.006. PMID 23540830.
  5. Ouellette, Marc (November 2001). "Biochemical and molecular mechanisms of drug resistance in parasites". Tropical Medicine and International Health. 6 (11): 874–882. doi:10.1046/j.1365-3156.2001.00777.x. ISSN 1360-2276. PMID 11703841.
  6. Khaw, M; Panosian, C B (1 July 1995). "Human antiprotozoal therapy: past, present, and future". Clinical Microbiology Reviews. 8 (3): 427–439. doi:10.1128/CMR.8.3.427. ISSN 0893-8512. PMC 174634. PMID 7553575.
  7. Graebin, C.; Uchoa, F.; Bernardes, L.; Campo, V.; Carvalho, I.; Eifler-Lima, V. (1 October 2009). "Antiprotozoal Agents: An Overview". Anti-Infective Agents in Medicinal Chemistry. 8 (4): 345–366. doi:10.2174/187152109789760199. ISSN 1871-5214.
  8. CREEK, DARREN J.; BARRETT, MICHAEL P. (9 January 2017). "Determination of antiprotozoal drug mechanisms by metabolomics approaches". Parasitology. 141 (1): 83–92. doi:10.1017/S0031182013000814. ISSN 0031-1820. PMC 3884841. PMID 23734876.
Major chemical drug groups – based upon the Anatomical Therapeutic Chemical Classification System
gastrointestinal tract
/ metabolism (A)
blood and blood
forming organs (B)
cardiovascular
system
(C)
skin (D)
genitourinary
system
(G)
endocrine
system
(H)
infections and
infestations (J, P, QI)
malignant disease
(L01–L02)
immune disease
(L03–L04)
muscles, bones,
and joints (M)
brain and
nervous system (N)
respiratory
system
(R)
sensory organs (S)
other ATC (V)
Antiparasiticsantiprotozoal agentsChromalveolata antiparasitics (P01)
Alveo-
late
Apicom-
plexa
Conoidasida/
(Coccidiostats)
Cryptosporidiosis
Isosporiasis
Toxoplasmosis
Aconoidasida
Malaria
Individual
agents
Hemozoin
inhibitors
Aminoquinolines
4-Methanolquinolines
Other
Antifolates
DHFR inhibitors
Sulfonamides
Co-formulation
Sesquiterpene
lactones
Other
Combi-
nations
Fixed-dose (co-formulated) ACTs
Other combinations
(not co-formulated)
  • artesunate/mefloquine
  • artesunate/SP
  • quinine/clindamycin
  • quinine/doxycycline
  • quinine/tetracycline
Babesiosis
Cilio-
phora
Stramen-
opile
Antiparasitics directed at excavata parasites (P01)
Discicristata
Trypanosomiasis
African trypanosomiasis
Chagas disease
Leishmaniasis

Pentavalent antimonials (Meglumine antimoniate, Sodium stibogluconate)

PAM
Trichozoa
Giardiasis
Trichomoniasis
Dientamoebiasis
Antiparasitics – antiprotozoal agents – agents against amoebozoa/amebicide (P01)
Entamoeba
Tissue amebicides
Nitroimidazole derivatives
Other
Luminal amebicides
Hydroxyquinoline derivatives
Dichloroacetamide derivatives
Aminoglycoside
Other/ungrouped
Acanthamoeba


Stub icon

This antiinfective drug article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Antiprotozoal Add topic