Misplaced Pages

Al-Jabr

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Al-Khwārizmī's Compendious Book) 9th-century Arabic work on algebra For other uses, see Jaber (disambiguation).

The Compendious Book on Calculation by Completion and Balancing
title page in Arabic writing and calligraphy; hand-drawn ornamental frame; parchment is gilded and stained from ageTitle page, 9th century
AuthorMuhammad ibn Musa al-Khwarizmi
Original titleكتاب المختصر في حساب الجبر والمقابلة
IllustratorMuhammad ibn Musa al-Khwarizmi
LanguageArabic
SubjectAlgebra
GenreMathematics
Publication date820
Publication placeAbbasid Caliphate
Original textكتاب المختصر في حساب الجبر والمقابلة at Arabic Wikisource
TranslationThe Compendious Book on Calculation by Completion and Balancing at Wikisource

Al-Jabr (Arabic: الجبر), also known as The Compendious Book on Calculation by Completion and Balancing (Arabic: الكتاب المختصر في حساب الجبر والمقابلة, al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah; or Latin: Liber Algebræ et Almucabola), is an Arabic mathematical treatise on algebra written in Baghdad around 820 by the Persian polymath Al-Khwarizmi. It was a landmark work in the history of mathematics, with its title being the ultimate etymology of the word "algebra" itself, later borrowed into Medieval Latin as algebrāica.

Al-Jabr provided an exhaustive account of solving for the positive roots of polynomial equations up to the second degree. It was the first text to teach elementary algebra, and the first to teach algebra for its own sake. It also introduced the fundamental concept of "reduction" and "balancing" (which the term al-jabr originally referred to), the transposition of subtracted terms to the other side of an equation, i.e. the cancellation of like terms on opposite sides of the equation. The mathematics historian Victor J. Katz regards Al-Jabr as the first true algebra text that is still extant. Translated into Latin by Robert of Chester in 1145, it was used until the sixteenth century as the principal mathematical textbook of European universities.

Several authors have also published texts under this name, including Abu Hanifa Dinawari, Abu Kamil, Abū Muḥammad al-ʿAdlī, Abū Yūsuf al-Miṣṣīṣī, 'Abd al-Hamīd ibn Turk, Sind ibn ʿAlī, Sahl ibn Bišr, and Šarafaddīn al-Ṭūsī.

Legacy

R. Rashed and Angela Armstrong write:

Al-Khwarizmi's text can be seen to be distinct not only from the Babylonian tablets, but also from the Diophantus' Arithmetica. It no longer concerns a series of problems to be resolved, but an exposition which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study. On the other hand, the idea of an equation for its own sake appears from the beginning and, one could say, in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems.

J. J. O'Connor and E. F. Robertson wrote in the MacTutor History of Mathematics archive:

Perhaps one of the most significant advances made by Arabic mathematics began at this time with the work of al-Khwarizmi, namely the beginnings of algebra. It is important to understand just how significant this new idea was. It was a revolutionary move away from the Greek concept of mathematics which was essentially geometry. Algebra was a unifying theory which allowed rational numbers, irrational numbers, geometrical magnitudes, etc., to all be treated as "algebraic objects". It gave mathematics a whole new development path so much broader in concept to that which had existed before, and provided a vehicle for future development of the subject. Another important aspect of the introduction of algebraic ideas was that it allowed mathematics to be applied to itself in a way which had not happened before.

The book

The book was a compilation and extension of known rules for solving quadratic equations and for some other problems, and considered to be the foundation of algebra, establishing it as an independent discipline. The word algebra is derived from the name of one of the basic operations with equations described in this book, following its Latin translation by Robert of Chester.

Quadratic equations

Pages from a 14th-century Arabic copy of the book, showing geometric solutions to two quadratic equations.

The book classifies quadratic equations to one of the six basic types and provides algebraic and geometric methods to solve the basic ones. Historian Carl Boyer notes the following regarding the lack of modern abstract notations in the book:

... the algebra of al-Khwarizmi is thoroughly rhetorical, with none of the syncopation (see History of algebra) found in the Greek Arithmetica or in Brahmagupta's work. Even the numbers were written out in words rather than symbols!

— Carl B. Boyer, A History of Mathematics

Thus the equations are verbally described in terms of "squares" (what would today be "x"), "roots" (what would today be "x") and "numbers" ("constants": ordinary spelled out numbers, like 'forty-two'). The six types, with modern notations, are:

  1. squares equal roots (ax = bx)
  2. squares equal number (ax = c)
  3. roots equal number (bx = c)
  4. squares and roots equal number (ax + bx = c)
  5. squares and number equal roots (ax + c = bx)
  6. roots and number equal squares (bx + c = ax)

Islamic mathematicians, unlike the Hindus, did not deal with negative numbers at all; hence an equation like bx + c = 0 does not appear in the classification, because it has no positive solutions if all the coefficients are positive. Similarly equation types 4, 5 and 6, which look equivalent to the modern eye, were distinguished because the coefficients must all be positive.

Al-Jabr ("forcing", "restoring") operation is moving a deficient quantity from one side of the equation to the other side. In an al-Khwarizmi's example (in modern notation), "x = 40x − 4x" is transformed by al-Jabr into "5x = 40x". Repeated application of this rule eliminates negative quantities from calculations.

Al-Muqābala (المقابله, "balancing" or "corresponding") means subtraction of the same positive quantity from both sides: "x + 5 = 40x + 4x" is turned into "5 = 40x + 3x". Repeated application of this rule makes quantities of each type ("square"/"root"/"number") appear in the equation at most once, which helps to see that there are only 6 basic solvable types of the problem, when restricted to positive coefficients and solutions.

Subsequent parts of the book do not rely on solving quadratic equations.

Area and volume

The second chapter of the book catalogues methods of finding area and volume. These include approximations of pi (π), given three ways, as 3 1/7, √10, and 62832/20000. This latter approximation, equalling 3.1416, earlier appeared in the Indian Āryabhaṭīya (499 CE).

Other topics

Al-Khwārizmī explicates the Jewish calendar and the 19-year cycle described by the convergence of lunar months and solar years.

About half of the book deals with Islamic rules of inheritance, which are complex and require skill in first-order algebraic equations.

References

Notes

  1. This book is the source of the word; see transliterated title.
  2. The Arabic title is sometimes condensed to Hisab al-Jabr wal-Muqabalah or Kitab al-Jabr wal-Muqabalah or given under other transliterations.
  3. "The Arabs in general loved a good clear argument from premise to conclusion, as well as systematic organization – respects in which neither Diophantus nor the Hindus excelled."
  4. "In a sense, Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers".
  5. "It is not certain just what the terms al-jabr and muqabalah mean, but the usual interpretation is similar to that implied in the translation above. The word al-jabr presumably meant something like "restoration" or "completion" and seems to refer to the transposition of subtracted terms to the other side of an equation, which is evident in the treatise; the word muqabalah is said to refer to "reduction" or "balancing"—that is, the cancellation of like terms on opposite sides of the equation."
  6. "The first true algebra text which is still extant is the work on al-jabr and al-muqabala by Mohammad ibn Musa al-Khwarizmi, written in Baghdad around 825."
  7. "The Compendious Book on Calculation by Completion and Balancing" (Hisab al-Jabr wa H-Muqabala) on the development of the subject cannot be underestimated. Translated into Latin during the twelfth century, it remained the principal mathematics textbook in European universities until the sixteenth century"

Citations

  1. ^ Boyer, Carl B. (1991). "The Arabic Hegemony". A History of Mathematics (Second ed.). John Wiley & Sons, Inc. ISBN 0-471-54397-7.
  2. Gandz; Saloman (1936). The sources of al-Khwarizmi's algebra. Vol. I. Osiris. pp. 263–277.
  3. Katz, Victor J.; Barton, Bill (December 2006). "Stages in the history of algebra with implications for teaching". Educational Studies in Mathematics. 66 (2): 185–201. doi:10.1007/s10649-006-9023-7. See p. 190.
  4. Philip Khuri Hitti (2002). History of the Arabs. Macmillan International Higher Education. pp. 379. ISBN 9780333631423.
  5. Fred James Hill, Nicholas Awde (2003). A History of the Islamic World. Hippocrene Books. pp. 55. ISBN 9780781810159.
  6. Overbay, Shawn; Schorer, Jimmy; Conger, Heather. "Al-Khwarizmi". University of Kentucky.
  7. "Islam Spain and the history of technology". www.sjsu.edu. Retrieved 24 January 2018.
  8. Rashed, R.; Armstrong, Angela (1994). The Development of Arabic Mathematics. Springer. pp. 11–12. ISBN 0-7923-2565-6. OCLC 29181926.
  9. O'Connor, John J.; Robertson, Edmund F. (1999). "Arabic mathematics: forgotten brilliance?". MacTutor History of Mathematics Archive. University of St Andrews.
  10. Robert of Chester (1915). Algebra of al-Khowarizmi. Macmillan. Archived from the original on 18 November 2018.
  11. Carl B. Boyer, A History of Mathematics, Second Edition (Wiley, 1991), p. 228
  12. Berggren, J. L. (1986). "Algebra in Islam". Episodes in the Mathematics of Medieval Islam. Springer. pp. 99–126. doi:10.1007/978-1-4612-4608-4_4. ISBN 9781461246084. See p. 103
  13. ^ B.L. van der Waerden, A History of Algebra: From al-Khwārizmī to Emmy Noether; Berlin: Springer-Verlag, 1985. ISBN 3-540-13610-X
  14. David A. King (2003). "Mathematics applied to aspects of religious ritual in Islam". In I. Grattan-Guinness (ed.). Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. Vol. 1. JHU Press. p. 83. ISBN 9780801873966.

Further reading

External links

Mathematics in the medieval Islamic world
Mathematicians
9th century
10th century
11th century
12th century
13th century
14th century
15th century
16th century
Mathematical
works
Concepts
Centers
Influences
Influenced
Related
Mathematics in Iran
Mathematicians
Before
20th Century
Modern
Flowers by Hamid Naderi Yeganeh
Prize Recipients
Fields Medal
EMS Prize
Satter Prize
Organizations
Institutions


Categories:
Al-Jabr Add topic