In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.
Adjunction for smooth varieties
Formula for a smooth subvariety
Let X be a smooth algebraic variety or smooth complex manifold and Y be a smooth subvariety of X. Denote the inclusion map Y → X by i and the ideal sheaf of Y in X by . The conormal exact sequence for i is
where Ω denotes a cotangent bundle. The determinant of this exact sequence is a natural isomorphism
where denotes the dual of a line bundle.
The particular case of a smooth divisor
Suppose that D is a smooth divisor on X. Its normal bundle extends to a line bundle on X, and the ideal sheaf of D corresponds to its dual . The conormal bundle is , which, combined with the formula above, gives
In terms of canonical classes, this says that
Both of these two formulas are called the adjunction formula.
Examples
Degree d hypersurfaces
Given a smooth degree hypersurface we can compute its canonical and anti-canonical bundles using the adjunction formula. This reads as
which is isomorphic to .
Complete intersections
For a smooth complete intersection of degrees , the conormal bundle is isomorphic to , so the determinant bundle is and its dual is , showing
This generalizes in the same fashion for all complete intersections.
Curves in a quadric surface
embeds into as a quadric surface given by the vanishing locus of a quadratic polynomial coming from a non-singular symmetric matrix. We can then restrict our attention to curves on . We can compute the cotangent bundle of using the direct sum of the cotangent bundles on each , so it is . Then, the canonical sheaf is given by , which can be found using the decomposition of wedges of direct sums of vector bundles. Then, using the adjunction formula, a curve defined by the vanishing locus of a section , can be computed as
Poincaré residue
See also: Poincaré residueThe restriction map is called the Poincaré residue. Suppose that X is a complex manifold. Then on sections, the Poincaré residue can be expressed as follows. Fix an open set U on which D is given by the vanishing of a function f. Any section over U of can be written as s/f, where s is a holomorphic function on U. Let η be a section over U of ωX. The Poincaré residue is the map
that is, it is formed by applying the vector field ∂/∂f to the volume form η, then multiplying by the holomorphic function s. If U admits local coordinates z1, ..., zn such that for some i, ∂f/∂zi ≠ 0, then this can also be expressed as
Another way of viewing Poincaré residue first reinterprets the adjunction formula as an isomorphism
On an open set U as before, a section of is the product of a holomorphic function s with the form df/f. The Poincaré residue is the map that takes the wedge product of a section of ωD and a section of .
Inversion of adjunction
The adjunction formula is false when the conormal exact sequence is not a short exact sequence. However, it is possible to use this failure to relate the singularities of X with the singularities of D. Theorems of this type are called inversion of adjunction. They are an important tool in modern birational geometry.
The Canonical Divisor of a Plane Curve
Let be a smooth plane curve cut out by a degree homogeneous polynomial . We claim that the canonical divisor is where is the hyperplane divisor.
First work in the affine chart . The equation becomes where and . We will explicitly compute the divisor of the differential
At any point either so is a local parameter or so is a local parameter. In both cases the order of vanishing of at the point is zero. Thus all contributions to the divisor are at the line at infinity, .
Now look on the line . Assume that so it suffices to look in the chart with coordinates and . The equation of the curve becomes
Hence
so
with order of vanishing . Hence which agrees with the adjunction formula.
Applications to curves
The genus-degree formula for plane curves can be deduced from the adjunction formula. Let C ⊂ P be a smooth plane curve of degree d and genus g. Let H be the class of a hyperplane in P, that is, the class of a line. The canonical class of P is −3H. Consequently, the adjunction formula says that the restriction of (d − 3)H to C equals the canonical class of C. This restriction is the same as the intersection product (d − 3)H ⋅ dH restricted to C, and so the degree of the canonical class of C is d(d−3). By the Riemann–Roch theorem, g − 1 = (d−3)d − g + 1, which implies the formula
Similarly, if C is a smooth curve on the quadric surface P×P with bidegree (d1,d2) (meaning d1,d2 are its intersection degrees with a fiber of each projection to P), since the canonical class of P×P has bidegree (−2,−2), the adjunction formula shows that the canonical class of C is the intersection product of divisors of bidegrees (d1,d2) and (d1−2,d2−2). The intersection form on P×P is by definition of the bidegree and by bilinearity, so applying Riemann–Roch gives or
The genus of a curve C which is the complete intersection of two surfaces D and E in P can also be computed using the adjunction formula. Suppose that d and e are the degrees of D and E, respectively. Applying the adjunction formula to D shows that its canonical divisor is (d − 4)H|D, which is the intersection product of (d − 4)H and D. Doing this again with E, which is possible because C is a complete intersection, shows that the canonical divisor C is the product (d + e − 4)H ⋅ dH ⋅ eH, that is, it has degree de(d + e − 4). By the Riemann–Roch theorem, this implies that the genus of C is
More generally, if C is the complete intersection of n − 1 hypersurfaces D1, ..., Dn − 1 of degrees d1, ..., dn − 1 in P, then an inductive computation shows that the canonical class of C is . The Riemann–Roch theorem implies that the genus of this curve is
In low dimensional topology
Let S be a complex surface (in particular a 4-dimensional manifold) and let be a smooth (non-singular) connected complex curve. Then
where is the genus of C, denotes the self-intersections and denotes the Kronecker pairing .
See also
References
- Zhang, Ziyu. "10. Algebraic Surfaces" (PDF). Archived from the original (PDF) on 2020-02-11.
- Hartshorne, chapter V, example 1.5.1
- Hartshorne, chapter V, example 1.5.2
- Gompf, Stipsicz, Theorem 1.4.17
- Intersection theory 2nd edition, William Fulton, Springer, ISBN 0-387-98549-2, Example 3.2.12.
- Principles of algebraic geometry, Griffiths and Harris, Wiley classics library, ISBN 0-471-05059-8 pp 146–147.
- Algebraic geometry, Robin Hartshorne, Springer GTM 52, ISBN 0-387-90244-9, Proposition II.8.20.
Topics in algebraic curves | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rational curves | |||||||||||
Elliptic curves |
| ||||||||||
Higher genus | |||||||||||
Plane curves | |||||||||||
Riemann surfaces | |||||||||||
Constructions | |||||||||||
Structure of curves |
|