This is an old revision of this page, as edited by 86.176.209.54 (talk) at 12:49, 25 February 2014 (→Determination from maps and models). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 12:49, 25 February 2014 by 86.176.209.54 (talk) (→Determination from maps and models)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) "Magnetic North" redirects here. For other uses, see Magnetic North (disambiguation).Magnetic declination or magnetic variation is the angle on the horizontal plane between magnetic north (the direction in which the north end of a compass needle points, corresponding to the direction of the Earth's magnetic field lines) and true north (the direction along a meridian towards the geographic North Pole). This angle varies depending on one's position on the Earth's surface, and over time.
Somewhat more formally, Bowditch defines variation as “the angle between the magnetic and geographic meridians at any place, expressed in degrees and minutes east or west to indicate the direction of magnetic north from true north. The angle between magnetic and grid meridians is called grid magnetic angle, grid variation, or grivation.”
By convention the declination is positive when magnetic north is east of true north, and negative when it is to the west. Isogonic lines are lines on the Earth's surface along which the declination has the same constant value, and lines along which the declination is zero are called agonic lines. The lowercase Greek letter δ (delta) is frequently used as the symbol for magnetic declination.
The term magnetic deviation is sometimes used loosely to mean the same as magnetic declination, but more strictly it refers to the error in a compass reading induced by nearby metallic objects, such as on board a ship or aircraft.
Magnetic declination should not be confused with magnetic inclination, also known as magnetic dip, which is the angle that the Earth's magnetic field lines make with the horizontal plane (i.e. upwards or downwards).
Change of declination over time and space
Magnetic declination varies both from place to place and with the passage of time. As a traveller cruises the east coast of the United States, for example, the declination varies from 20 degrees west (in Maine) to zero (in Florida), to 10 degrees east (in Texas), meaning a compass adjusted at the beginning of the journey would have a true north error of over 30 degrees if not adjusted for the changing declination. In the UK it is one degree 7 minutes west (London, 2014), and as the country is quite small that figure is fairly good for the whole of the country. It is reducing, and it is predicted that in about 2050 it will be zero.
In most areas, the spatial variation reflects the irregularities of the flows deep in the earth; in some areas, deposits of iron ore or magnetite in the Earth's crust may contribute strongly to the declination. Similarly, secular changes to these flows result in slow changes to the field strength and direction at the same point on the Earth.
The magnetic declination in a given area may (most likely will) change slowly over time, possibly as little as 2–2.5 degrees every hundred years or so, depending upon how far from the magnetic poles it is. For a location closer to the pole like Ivujivik, the declination may change by 1 degree every three years. This may be insignificant to most travellers, but can be important if using magnetic bearings from old charts or metes (directions) in old deeds for locating places with any precision.
Determining declination
Direct determination
The magnetic declination at any particular place can be measured directly by reference to the celestial poles – the points in the heavens around which the stars appear to revolve, and which mark the direction of true north and true south. The instrument used to perform this measurement is known as a declinometer.
The approximate position of the north celestial pole is indicated by Polaris (the North Star). In the northern hemisphere, declination can therefore be approximately determined as the difference between the magnetic bearing and a visual bearing on Polaris. Polaris currently traces a circle 0.75° in radius around the north celestial pole, so this technique is accurate to within a degree. At high latitudes a plumb-bob is helpful to sight Polaris against a reference object close to the horizon, from which its bearing can be taken.
Determination from maps and models
A rough estimate of the local declination (within a few degrees) can be determined from a general isogonic chart of the world or a continent, such as those illustrated above. Isogonic are also shown on aeronautical and nautical charts.
Large-scale local maps may indicate current local declination, often with the aid of a schematic diagram. The current rate and direction of change may also be shown, for example in arcminutes per year. On the topographic maps of the U.S. Geological Survey (USGS), for example, a diagram shows the relationship between magnetic north in the area concerned (with an arrow marked "MN") and true north (a vertical line with a five-pointed star at its top), with a label near the angle between the MN arrow and the vertical line, stating the size of the declination and of that angle, in degrees, mils, or both.
A prediction of the current magnetic declination for a given location (based on a worldwide empirical model of the deep flows described above) can be obtained online from a web page operated by the National Geophysical Data Center, a division of the National Oceanic and Atmospheric Administration of the United States. This model is built with all the information available to the map-makers at the start of the five-year period it is prepared for. It reflects a highly predictable rate of change, and will usually be more accurate than a map – which is sure to be months or years out of date – and almost never less accurate.
Using the declination
Adjustable compasses
A magnetic compass points to magnetic north, not geographic north. Compasses of the style commonly used for hiking usually include a "baseplate" marked with a bezel that includes a graduated scale of degrees along with the four cardinal directions. Most advanced / costlier compasses include a declination adjustment. Such an adjustment moves the red "orienting arrow" (found on the base of the liquid filled cylinder that contains the needle) relative to the bezel and the baseplate. Either the cylinder will have a mark to be read against the scale of degrees on the baseplate, or a separate scale will display the current adjustment in degrees (i.e., the angle by which it has been turned). In either case, the underlying concept is that for a declination of 10° W, the red orienting arrow on the cylinder must lie 10° W of 0°/N on the bezel. (Basically, in this case, you are permanently subtracting 10° from your future bearings to compensate for the -10° declination. If your declination was 10°E you would rotate the baseplate's red orienting arrow 10° E of 0°/N to compensate for the +10° declination.) In this sense, it can be said that the compass has been adjusted to indicate true north instead of magnetic north (as long as the compass remains within an area on the same isogonic line).
Non-adjustable compasses
With a compass lacking an adjustable baseplate, a careful, well-practiced, compass user can analyse the combination of declination and task, and decide whether the declination is to be added or subtracted from the known direction to determine an unknown direction.
In a place where the declination needs to be subtracted from an angle measured on a map from true north to a destination, to learn the compass reading to follow (on an unadjusted compass) to walk that course, the declination needs to be added to the compass reading that a landmark lies along, to learn the direction on the map to seek the name to match the landmark with.
Navigation
On aircraft or vessels there are even three types of bearings: true, magnetic, and compass bearing. Compass error is divided into two parts, namely magnetic variation and magnetic deviation, the latter originating from magnetic properties of the vessel or aircraft. Variation and deviation are signed quantities. As discussed above, positive (easterly) variation indicates magnetic north being east of geographic north. Deviation is positive if a compass bearing mark points to the right of the related magnetic bearing.
If one knows compass bearing and wants to determine true bearing the following calculations apply:
Or starting from a given true bearing, the related compass bearing is obtained by:
It is often combined with "West is Best, East is least"; that is to say, add W declinations when going True headings to Magnetic Compass, and subtract E ones.
Another simple way of remembering which way to apply the correction for Continental USA is as follows: For locations east of the agonic line (zero declination), roughly east of the Mississippi: The magnetic bearing is always bigger. For locations west of the agonic line (zero declination), roughly west of the Mississippi: The magnetic bearing is always smaller.
Common abbreviations are:
- TC = true course;
- V = variation (of the Earth's magnetic field);
- MC = magnetic course (what the course would be in the absence of local declination);
- D = deviation caused by magnetic material (mostly iron and steel) on the vessel;
- CC = compass course.
Variation
Magnetic variation is the angle from magnetic north to true north (positive in clockwise, easterly direction) and is caused by the different locations of the Geographic North Pole and the Magnetic North Pole plus any local anomalies such as iron deposits. Variation is positive (easterly) if magnetic north (MN) is right (easterly) of geographic north (true north, TN). Variation is negative if magnetic north is left (westerly) of true north. Variation is the same for all compasses in the same location and is usually stated on good quality maps and charts, along with the date it was measured. Variation has to be added to magnetic bearing to obtain true bearing.
Deviation
Magnetic deviation is the angle from a given magnetic bearing to the related bearing mark of the compass. Deviation is positive if a compass bearing mark (e.g. compass north) is right of the related magnetic bearing (e.g. magnetic north) and vice versa. For example, if the boat is aligned to magnetic north and the compass' north mark points 3° more east, deviation is +3°. Deviation varies for every compass in the same location and depends on such factors as the magnetic field of the vessel, wristwatches, etc. The value will also vary depending on the orientation of the boat. Magnets and/or iron masses can be used to correct for deviation so that a particular compass will accurately give magnetic bearings. More commonly, however, a correction card will be drawn up listing errors for the compass which can then be compensated for arithmetically. Deviation has to be added to compass bearing to obtain magnetic bearing.
Air navigation
Magnetic declination has a very important influence on air navigation, since the most simple aircraft navigation instruments are designed to determine headings by locating magnetic north through the use of a compass or similar magnetic device.
Aviation sectionals (maps / charts) and databases used for air navigation are based on True north rather than magnetic north, and the constant and significant slight changes in the actual location of magnetic north and local irregularities in the planet's magnetic field require that charts and databases be updated at least 2 times per year to reflect the current magnetic variation correction from True north. For example, as of March 2010, near San Francisco the magnetic north is about 14.3 degrees east of True north, with the difference decreasing by about 6 minutes of arc per year.
When plotting a course, a pilot in most small planes will plot a trip using true north on a sectional (map), then, convert the true north bearings to magnetic north for in-plane navigation using the magnetic compass. During flight, the correct compass course is obtained by a deviation correction card, which is usually located in the proximity of the compass.
Radionavigation aids located on the ground, such as VORs, are also checked and updated to keep them aligned with magnetic north to allow pilots to use their magnetic compasses for accurate and reliable in-plane navigation.
Runways are named by a number between 01 and 36, which is generally one tenth of the magnetic azimuth of the runway's heading: a runway numbered 09 points east (90°), runway 18 is south (180°), runway 27 points west (270°) and runway 36 points to the north (360° rather than 0°). However, due to magnetic declination, changes in runway names have to occur at times to keep their name in line with the runway's magnetic heading. An exception is made for runways which lie within the Northern Domestic Airspace of Canada; these are numbered relative to true north because proximity to the magnetic North Pole makes the magnetic declination large.
GPS systems used for air navigation can use magnetic north or true north. In order to make them more compatible with systems that depend on magnetic north, magnetic north is often chosen, at the pilot's preference. The GPS receiver natively reads in true north, but can elegantly calculate magnetic north based on its true position and data tables calculate the current location and direction of the north magnetic pole and (potentially) any local variations, if the GPS is set to use magnetic compass readings.
See also
- Template:Books-inline
- Geomagnetism
- L-shell
- Magnetic inclination
- Pole star
- Shen Kuo
- Voyages of Christopher Columbus
References
- Bowditch, Nathaniel (2002). American Practical Navigator. Paradise Cay Publications. p. 849. ISBN 9780939837540.
- "Find the magnetic declination at your location". Magnetic-Declination.com. Retrieved 6 December 2013.
{{cite web}}
: line feed character in|title=
at position 30 (help) - Magnetic declination, what it is , how to compensate.
- "Estimated Value of Magnetic Declination". Geomagnetism. NOAA National Geophysical Data Center. Retrieved 6 December 2013.
- According to NOAA Geophysical Data Center on-line model
- Federal Aviation Administration Aeronautical Information Manual, Chapter 2, Section 3 Airport Marking Aids and Signs part 3b
External links
- USGS Geomagnetism Program
- Looks up your IP address location and tells you your declination.
- Online declination calculator at the National Geophysical Data Center (NGDC)
- Online declination and field strength calculator at the NGDC
- Mobile web-app for magnetic declination at the NGDC
- Magnetic declination calculator at Natural Resources Canada