This is an old revision of this page, as edited by CheMoBot (talk | contribs) at 00:01, 20 April 2011 (Updating {{chembox}} (no changed fields - added verified revid - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation (). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 00:01, 20 April 2011 by CheMoBot (talk | contribs) (Updating {{chembox}} (no changed fields - added verified revid - updated 'UNII_Ref', 'ChemSpiderID_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEMBL_Ref', 'KEGG_Ref') per Chem/Drugbox validation ()(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2009) |
Names | |
---|---|
IUPAC name 2,2-bispropane | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ECHA InfoCard | 100.024.524 |
CompTox Dashboard (EPA) | |
SMILES
| |
Properties | |
Chemical formula | C21H28O6 |
Molar mass | 376.44 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
2,2-Bispropane (bis-HPPP) is an organic compound structurally related to bisphenol A.
Together with methacrylic acid, bis-HPPP is released following the CE-catalyzed hydrolysis of 2,2-propane (bis-GMA). This reaction is very common in hydrolytic degradation of the dental resin since salivary esterases are able to cleave the ester bonds in acrylic polymers of dental composites.
Analysis by mass spectrometry demonstrated that hydrolytic reactions would cleave the ester bonds of both methacrylate units in bis-GMA and produce bis-HPPP along with two molecules of methacrylic acid.
References
- Finer Y, S.J.; Santerre, JP (2004). "The influence of resin chemistry on a dental composite's biodegradation". J Biomed Mater Res. 69A (2): 233–246. doi:10.1002/jbm.a.30000. PMID 15057996.