Misplaced Pages

Tetration: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 22:09, 8 June 2019 edit2600:1010:b050:a86b:3c36:95de:1cad:ed2d (talk) Linear approximation for real heightsTags: Mobile edit Mobile web edit← Previous edit Revision as of 17:03, 9 June 2019 edit undoIncnis Mrsi (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers11,646 edits fixed a bunch of typographic idiocies and imbecilities (a couple of them, sadly, inside {{math}} which is normally used by wizards only)Tag: nowiki addedNext edit →
Line 1: Line 1:
{{distinguish|titration}} {{distinguish|titration}}
] of the ] tetration <math>{}^{z}e</math>, with ] representing the function ] and ] representing magnitude]] ] of the ] tetration <math>{}^{z}e</math>, with ] representing the function ] and ] representing magnitude]]
] ]


In ], '''tetration''' (or '''hyper-4''') is ], or repeated, exponentiation. It is the next ] after ], but before ]. The word was coined by ] from ] (four) and ]. Tetration is used for the ]. The notation <math>{^{n}a}</math> means <math>{a^{a^{\cdot^{\cdot^{a}}}}}</math>, which is the application of exponentiation <math>n-1</math> times. In ], '''tetration''' (or '''hyper-4''') is ], or repeated, exponentiation. It is the next ] after ], but before ]. The word was coined by ] from ] (four) and ]. Tetration is used for the ]. The notation <math>{^{n}a}</math> means <math>{a^{a^{\cdot^{\cdot^{a}}}}}</math>, which is the application of exponentiation <math>n-1</math> times.
Line 19: Line 19:
#::''n'' copies of ''a'' combined by exponentiation, right-to-left. #::''n'' copies of ''a'' combined by exponentiation, right-to-left.


Here, succession {{math|(''a''' {{=}} ''a'' + 1)}} is the most basic operation; addition ({{math|''a + n''}}) is a primary operation, though for natural numbers it can be thought of as a chained succession of {{mvar|n}} successors of {{mvar|a}}; multiplication (<math>a \times n</math>) is also a primary operation, though for natural numbers it can be thought of as a chained addition involving {{mvar|n}} numbers {{mvar|a}}. Exponentiation (<math>a^n</math>) can be thought of as a chained multiplication involving {{mvar|n}} numbers {{mvar|a}}, and analogously, tetration (<math>^{n}a</math>) can be thought of as a chained power involving {{mvar|n}} numbers {{mvar|a}}. Each of the operations above are defined by iterating the previous one; however, unlike the operations before it, tetration is not an ]. Here, succession {{math|(''a′'' {{=}} ''a'' + 1)}} is the most basic operation; addition ({{math|''a'' + ''n''}}) is a primary operation, though for natural numbers it can be thought of as a chained succession of {{mvar|n}} successors of {{mvar|a}}; multiplication ({{math|(''a'' × ''n''}}) is also a primary operation, though for natural numbers it can be thought of as a chained addition involving {{mvar|n}} numbers {{mvar|a}}. Exponentiation (<math>a^n</math>) can be thought of as a chained multiplication involving {{mvar|n}} numbers {{mvar|a}}, and analogously, tetration (<math>^{n}a</math>) can be thought of as a chained power involving {{mvar|n}} numbers {{mvar|a}}. Each of the operations above are defined by iterating the previous one; however, unlike the operations before it, tetration is not an ].


The parameter {{mvar|a}} may be called the base-parameter in the following, while the parameter {{mvar|n}} in the following may be called the ''height''-parameter (which is integral in the first approach but may be generalized to fractional, real and complex ''heights'', see below). Tetration is read as "the ''nth'' tetration of ''a''". The parameter {{mvar|a}} may be called the base-parameter in the following, while the parameter {{mvar|n}} in the following may be called the ''height''-parameter (which is integral in the first approach but may be generalized to fractional, real and complex ''heights'', see below). Tetration is read as "the {{mvar|n}}th tetration of {{mvar|a}}".


== Formal definition == == Formal definition ==
Line 34: Line 34:
* The term ''superexponentiation'' was published by Bromer in his paper ''Superexponentiation'' in 1987.<ref>{{cite journal |author=N. Bromer |title=Superexponentiation |journal=Mathematics Magazine |volume=60 |issue=3 |year=1987 |pages=169–174 |jstor=2689566}}</ref> It was used earlier by Ed Nelson in his book Predicative Arithmetic, Princeton University Press, 1986. * The term ''superexponentiation'' was published by Bromer in his paper ''Superexponentiation'' in 1987.<ref>{{cite journal |author=N. Bromer |title=Superexponentiation |journal=Mathematics Magazine |volume=60 |issue=3 |year=1987 |pages=169–174 |jstor=2689566}}</ref> It was used earlier by Ed Nelson in his book Predicative Arithmetic, Princeton University Press, 1986.
* The term ''hyperpower''<ref>{{cite journal |author=J. F. MacDonnell |title=Somecritical points of the hyperpower function <math>x^{x^{\dots}}</math> |journal=International Journal of Mathematical Education |year=1989 |volume=20 |issue=2 |pages=297–305 |mr=994348 |url=http://www.faculty.fairfield.edu/jmac/ther/tower.htm |doi=10.1080/0020739890200210}}</ref> is a natural combination of ''hyper'' and ''power'', which aptly describes tetration. The problem lies in the meaning of ''hyper'' with respect to the ] sequence. When considering hyperoperations, the term ''hyper'' refers to all ranks, and the term ''super'' refers to rank 4, or tetration. So under these considerations ''hyperpower'' is misleading, since it is only referring to tetration. * The term ''hyperpower''<ref>{{cite journal |author=J. F. MacDonnell |title=Somecritical points of the hyperpower function <math>x^{x^{\dots}}</math> |journal=International Journal of Mathematical Education |year=1989 |volume=20 |issue=2 |pages=297–305 |mr=994348 |url=http://www.faculty.fairfield.edu/jmac/ther/tower.htm |doi=10.1080/0020739890200210}}</ref> is a natural combination of ''hyper'' and ''power'', which aptly describes tetration. The problem lies in the meaning of ''hyper'' with respect to the ] sequence. When considering hyperoperations, the term ''hyper'' refers to all ranks, and the term ''super'' refers to rank 4, or tetration. So under these considerations ''hyperpower'' is misleading, since it is only referring to tetration.
* The term ''power tower''<ref>{{MathWorld |urlname=PowerTower |title=Power Tower}}</ref> is occasionally used, in the form "the power tower of order ''n''" for <math>{\ \atop {\ }} {{\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}} \atop n}</math>. This is a misnomer, however, because tetration cannot be expressed with iterated ''power'' functions (see above), since it is an iterated ''exponential'' function. * The term ''power tower''<ref>{{MathWorld |urlname=PowerTower |title=Power Tower}}</ref> is occasionally used, in the form "the power tower of order {{mvar|n}}" for <math>{\ \atop {\ }} {{\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}} \atop n}</math>. This is a misnomer, however, because tetration cannot be expressed with iterated ''power'' functions (see above), since it is an iterated ''exponential'' function.
* The term ''snap'' is occasionally used in informal contexts, in the form "''a'' snap ''n''" for <math>{\ \atop {\ }} {{\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}} \atop n}</math>. This term is not yet widely accepted, although it is used within select communities.{{citation needed|date=November 2018}} It is believed to be a reference to ], the fourth derivative of position in physics, as tetration is the fourth hyperoperation and jounce is also known as snap. * The term ''snap'' is occasionally used in informal contexts, in the form "{{mvar|a}} snap {{mvar|n}}" for <math>{\ \atop {\ }} {{\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}} \atop n}</math>. This term is not yet widely accepted, although it is used within select communities.{{citation needed|date=November 2018}} It is believed to be a reference to ], the fourth derivative of position in physics, as tetration is the fourth hyperoperation and jounce is also known as snap.
<!-- (No such article) <!-- (No such article)
* Ultra exponential is also used, see ]. * Ultra exponential is also used, see ].
Line 58: Line 58:
|} |}


In the first two expressions ''a'' is the ''base'', and the number of times ''a'' appears is the ''height'' (add one for ''x''). In the third expression, ''n'' is the ''height'', but each of the bases is different. In the first two expressions {{mvar|a}} is the ''base'', and the number of times {{mvar|a}} appears is the ''height'' (add one for {{mvar|x}}). In the third expression, {{mvar|n}} is the ''height'', but each of the bases is different.


Care must be taken when referring to iterated exponentials, as it is common to call expressions of this form iterated exponentiation, which is ambiguous, as this can either mean ] ] or iterated ]. Care must be taken when referring to iterated exponentials, as it is common to call expressions of this form iterated exponentiation, which is ambiguous, as this can either mean ] ] or iterated ].
Line 127: Line 127:


One notation above uses iterated exponential notation; in general this is defined as follows: One notation above uses iterated exponential notation; in general this is defined as follows:
:<math>\exp_a^n(x) = a^{a^{\cdot^{\cdot^{a^x}}}}</math> with ''n'' "''a''"s. :<math>\exp_a^n(x) = a^{a^{\cdot^{\cdot^{a^x}}}}</math> with {{mvar|n}} {{mvar|a}}s.


There are not as many notations for iterated exponentials, but here are a few: There are not as many notations for iterated exponentials, but here are a few:
Line 137: Line 137:
| Standard notation | Standard notation
| <math>\exp_a^n(x)</math> | <math>\exp_a^n(x)</math>
| Euler coined the notation <math>\exp_a(x) = a^x</math>, and iteration notation <math>f^n(x)</math> has been around about as long. | ] coined the notation <math>\exp_a(x) = a^x</math>, and iteration notation <math>f^n(x)</math> has been around about as long.
|- |-
| Knuth's up-arrow notation | Knuth's up-arrow notation
Line 171: Line 171:
| 4 | 4
| 16 | 16
| 65,536 | ]
| 2<sup>65,536</sup> or (2.00353 × 10<sup>19,728</sup>) | 2<sup>65,536</sup> or (2.00353 × 10<sup>19,728</sup>)
|- align=right |- align=right
Line 235: Line 235:
\end{align}</math> \end{align}</math>


When a number ''x'' and 10 are ], it is possible to compute the last ''m'' decimal digits of <math>\,\!\ ^{a}x</math> using ], for any integer ''m''. When a number {{mvar|x}} and 10 are ], it is possible to compute the last {{mvar|m}} decimal digits of <math>\,\!\ ^{a}x</math> using ], for any integer {{mvar|m}}.


===Direction of evaluation=== ===Direction of evaluation===
Line 247: Line 247:


==Extensions== ==Extensions==
Tetration can be extended in two different ways; in the equation <math>^na</math>, both the base ''a'' and the height ''n'' can be generalized using the definition and properties of tetration. Although the base and the height can be extended beyond the positive integers to different ]s, including <math>{^n 0}</math>, complex functions such as <math>{}^{n}i</math>, and heights of infinite <math>n</math>, the more limited properties of tetration reduce the ability to extend tetration. Tetration can be extended in two different ways; in the equation <math>^na</math>, both the base {{mvar|a}} and the height {{mvar|n}} can be generalized using the definition and properties of tetration. Although the base and the height can be extended beyond the positive integers to different ]s, including <math>{^n 0}</math>, complex functions such as <math>{}^{n}i</math>, and heights of infinite {{mvar|n}}, the more limited properties of tetration reduce the ability to extend tetration.


===Extension of domain for bases=== ===Extension of domain for bases===
Line 269: Line 269:
:<math>i^{a+bi} = e^{\frac{1}{2}{\pi i} (a + bi)} = e^{-\frac{1}{2}{\pi b}} \left(\cos{\frac{\pi a}{2}} + i \sin{\frac{\pi a}{2}}\right)</math> :<math>i^{a+bi} = e^{\frac{1}{2}{\pi i} (a + bi)} = e^{-\frac{1}{2}{\pi b}} \left(\cos{\frac{\pi a}{2}} + i \sin{\frac{\pi a}{2}}\right)</math>


This suggests a recursive definition for {{math|<sup>''n''+1</sup>''i'' {{=}} ''a' ''+'' b'i''}} given any {{math|<sup>''n''</sup>''i'' {{=}} ''a'' + ''bi''}}: This suggests a recursive definition for {{math|<sup>''n''+1</sup>''i'' {{=}} ''a′'' + ''b′i''}} given any {{math|<sup>''n''</sup>''i'' {{=}} ''a'' + ''bi''}}:
:<math>\begin{align} :<math>\begin{align}
a' &= e^{-\frac{1}{2}{\pi b}} \cos{\frac{\pi a}{2}} \\ a' &= e^{-\frac{1}{2}{\pi b}} \cos{\frac{\pi a}{2}} \\
Line 311: Line 311:
Solving the inverse relation, as in the previous section, yields the expected {{math|<sup>0</sup>''i'' {{=}} 1}} and {{math|<sup>−1</sup>''i'' {{=}} 0}}, with negative values of {{mvar|n}} giving infinite results on the imaginary axis. Plotted in the ], the entire sequence spirals to the limit {{math|0.4383 + 0.3606''i''}}, which could be interpreted as the value where {{mvar|n}} is infinite. Solving the inverse relation, as in the previous section, yields the expected {{math|<sup>0</sup>''i'' {{=}} 1}} and {{math|<sup>−1</sup>''i'' {{=}} 0}}, with negative values of {{mvar|n}} giving infinite results on the imaginary axis. Plotted in the ], the entire sequence spirals to the limit {{math|0.4383 + 0.3606''i''}}, which could be interpreted as the value where {{mvar|n}} is infinite.


Such tetration sequences have been studied since the time of ], but are poorly understood due to their chaotic behavior. Most published research historically has focused on the convergence of the infinitely iterated exponential function. Current research has greatly benefited by the advent of powerful computers with ] and symbolic mathematics software. Much of what is known about tetration comes from general knowledge of complex dynamics and specific research of the exponential map. Such tetration sequences have been studied since the time of Euler, but are poorly understood due to their chaotic behavior. Most published research historically has focused on the convergence of the infinitely iterated exponential function. Current research has greatly benefited by the advent of powerful computers with ] and symbolic mathematics software. Much of what is known about tetration comes from general knowledge of complex dynamics and specific research of the exponential map.


===Extensions of the domain for different "heights"=== ===Extensions of the domain for different "heights"===
Line 319: Line 319:
] ]


Tetration can be extended to ] heights;<ref>{{cite web | url=http://math.blogoverflow.com/2015/01/05/climbing-the-ladder-of-hyper-operators-tetration/ | title=Climbing the ladder of hyper operators: tetration | publisher=George Daccache | date=January 5, 2015 | accessdate=18 February 2016}}</ref> i.e., for certain ''a'' and ''n'' values in <math>{}^{n}a</math>, there exists a well defined result for an infinite ''n''. This is because for bases within a certain interval, tetration converges to a finite value as the height tends to ]. For example, <math>\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\cdot^{\cdot^{\cdot}}}}}</math> converges to 2, and can therefore be said to be equal to 2. The trend towards 2 can be seen by evaluating a small finite tower: Tetration can be extended to ] heights;<ref>{{cite web | url=http://math.blogoverflow.com/2015/01/05/climbing-the-ladder-of-hyper-operators-tetration/ | title=Climbing the ladder of hyper operators: tetration | publisher=George Daccache | date=January 5, 2015 | accessdate=18 February 2016}}</ref> i.e., for certain {{mvar|a}} and {{mvar|n}} values in <math>{}^{n}a</math>, there exists a well defined result for an infinite {{mvar|n}}. This is because for bases within a certain interval, tetration converges to a finite value as the height tends to ]. For example, <math>\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\cdot^{\cdot^{\cdot}}}}}</math> converges to 2, and can therefore be said to be equal to 2. The trend towards 2 can be seen by evaluating a small finite tower:


:<math>\begin{align} :<math>\begin{align}
Line 330: Line 330:
\end{align}</math> \end{align}</math>


In general, the infinitely iterated exponential <math>x^{x^{\cdot^{\cdot^{\cdot}}}}</math>, defined as the limit of <math>{}^{n}x</math> as ''n'' goes to infinity, converges for ''e''<sup>−''e''</sup>&nbsp;&nbsp;''x''&nbsp;&nbsp;''e''<sup>1/''e''</sup>, roughly the interval from 0.066 to 1.44, a result shown by ].<ref>Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." ''Acta Acad. Scient. Petropol. 2'', 29&ndash;51, 1783. Reprinted in Euler, L. ''Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae''. Leipzig, Germany: Teubner, pp. 350&ndash;369, 1921. ()</ref> The limit, should it exist, is a positive real solution of the equation ''y''&nbsp;=&nbsp;''x''<sup>''y''</sup>. Thus, ''x''&nbsp;=&nbsp;''y''<sup>1/''y''</sup>. The limit defining the infinite tetration of ''x'' fails to converge for ''x''&nbsp;>&nbsp;''e''<sup>1/''e''</sup> because the maximum of ''y''<sup>1/''y''</sup> is ''e''<sup>1/''e''</sup>. In general, the infinitely iterated exponential <math>x^{x^{\cdot^{\cdot^{\cdot}}}}</math>, defined as the limit of <math>{}^{n}x</math> as {{mvar|n}} goes to infinity, converges for {{math|''e''<sup>−''e''</sup> ''x'' ''e''<sup>1/''e''</sup>}}, roughly the interval from 0.066 to 1.44, a result shown by ].<ref>Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." ''Acta Acad. Scient. Petropol. 2'', 29–51, 1783. Reprinted in Euler, L. ''Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae''. Leipzig, Germany: Teubner, pp. 350–369, 1921. ()</ref> The limit, should it exist, is a positive real solution of the equation {{math|1=''y'' = ''x''<sup>''y''</sup>}}. Thus, {{math|1=''x'' = ''y''<sup>1/''y''</sup>}}. The limit defining the infinite tetration of {{mvar|x}} fails to converge for {{math|''x'' > ''e''<sup>1/''e''</sup>}} because the maximum of {{math|''y''<sup>1/''y''</sup>}} is {{math|''e''<sup>1/''e''</sup>}}.


This may be extended to complex numbers ''z'' with the definition: This may be extended to complex numbers {{mvar|z}} with the definition:
:<math>{}^{\infty}z = z^{z^{\cdot^{\cdot^{\cdot}}}} = \frac{\mathrm{W}(-\ln{z})}{-\ln{z}} ~,</math> :<math>{}^{\infty}z = z^{z^{\cdot^{\cdot^{\cdot}}}} = \frac{\mathrm{W}(-\ln{z})}{-\ln{z}} ~,</math>
where ''W'' represents ]. where {{math|W}} represents ].


As the limit ''y''&nbsp;=&nbsp;<sup>∞</sup>''x'' (if existent, i.e. for ''e''<sup>−''e''</sup>&nbsp;<&nbsp;''x''&nbsp;<&nbsp;''e''<sup>1/''e''</sup>) must satisfy ''x''<sup>''y''</sup>&nbsp;=&nbsp;''y'' we see that ''x''&nbsp;&nbsp;''y''&nbsp;=&nbsp;<sup>∞</sup>''x'' is (the lower branch of) the inverse function of ''y''&nbsp;&nbsp;''x''&nbsp;=&nbsp;''y''<sup>1/''y''</sup>. As the limit {{math|1=''y'' = <sup>∞</sup>''x''}} (if existent, i.e. for {{math|''e''<sup>−''e''</sup> < ''x'' < ''e''<sup>1/''e''</sup>}}) must satisfy {{math|1=''x''<sup>''y''</sup> = ''y''}} we see that {{math|1=''x'' ''y'' = <sup>∞</sup>''x''}} is (the lower branch of) the inverse function of {{math|1=''y'' ''x'' = ''y''<sup>1/''y''</sup>}}.


====Negative heights==== ====Negative heights====
Line 345: Line 345:
:<math> ^{k}a = \log_a \left(^{k+1}a\right);</math> :<math> ^{k}a = \log_a \left(^{k+1}a\right);</math>


Substituting −1 for ''k'' gives Substituting −1 for {{mvar|k}} gives
:<math> {}^{-1}a = \log_{a} \left({}^0 a\right) = \log_a 1 = 0</math>.<ref name="tetration extensions"/> :<math> {}^{-1}a = \log_{a} \left({}^0 a\right) = \log_a 1 = 0</math>.<ref name="tetration extensions"/>


Smaller negative values cannot be well defined in this way. Substituting −2 for ''k'' in the same equation gives Smaller negative values cannot be well defined in this way. Substituting −2 for {{mvar|k}} in the same equation gives
:<math> {}^{-2}a = \log_{a} \left( {}^{-1}a \right) = \log_a 0 </math> :<math> {}^{-2}a = \log_{a} \left( {}^{-1}a \right) = \log_a 0 </math>


Line 358: Line 358:
====Real heights==== ====Real heights====


At this time there is no commonly accepted solution to the general problem of extending tetration to the real or complex values of <math>n</math>. There have, however, been multiple approaches towards the issue, and different approaches are outlined below. At this time there is no commonly accepted solution to the general problem of extending tetration to the real or complex values of {{mvar|n}}. There have, however, been multiple approaches towards the issue, and different approaches are outlined below.


In general the problem is finding, for any real ''a''&nbsp;>&nbsp;0, a ''super-exponential function'' <math>\,f(x) = {}^{x}a</math> over real ''x''&nbsp;>&nbsp;&minus;2 that satisfies In general the problem is finding, for any real {{math|''a'' > 0}}, a ''super-exponential function'' <math>\,f(x) = {}^{x}a</math> over real {{math|''x'' > −2}} that satisfies
*<math>\,{}^{-1}a = 0</math> *<math>\,{}^{-1}a = 0</math>
*<math>\,{}^{0}a = 1</math> *<math>\,{}^{0}a = 1</math>
Line 367: Line 367:
To find a more natural extension, one or more extra requirements are usually required. This is usually some collection of the following: To find a more natural extension, one or more extra requirements are usually required. This is usually some collection of the following:
*A ''continuity'' requirement (usually just that <math>{}^{x}a</math> is continuous in both variables for <math>x > 0</math>). *A ''continuity'' requirement (usually just that <math>{}^{x}a</math> is continuous in both variables for <math>x > 0</math>).
*A ''differentiability'' requirement (can be once, twice, ''k'' times, or infinitely differentiable in ''x''). *A ''differentiability'' requirement (can be once, twice, {{mvar|k}} times, or infinitely differentiable in {{mvar|x}}).
*A ''regularity'' requirement (implying twice differentiable in ''x'') that: *A ''regularity'' requirement (implying twice differentiable in {{mvar|x}}) that:
:<math>\left( \frac{d^2}{dx^2}f(x) > 0\right)</math> for all <math>x > 0</math> :<math>\left( \frac{d^2}{dx^2}f(x) > 0\right)</math> for all <math>x > 0</math>


The fourth requirement differs from author to author, and between approaches. There are two main approaches to extending tetration to real heights; one is based on the ''regularity'' requirement, and one is based on the ''differentiability'' requirement. These two approaches seem to be so different that they may not be reconciled, as they produce results inconsistent with each other. The fourth requirement differs from author to author, and between approaches. There are two main approaches to extending tetration to real heights; one is based on the ''regularity'' requirement, and one is based on the ''differentiability'' requirement. These two approaches seem to be so different that they may not be reconciled, as they produce results inconsistent with each other.


When <math>\,{}^{x}a</math> is defined for an interval of length one, the whole function easily follows for all ''x''&nbsp;>&nbsp;&minus;2. When <math>\,{}^{x}a</math> is defined for an interval of length one, the whole function easily follows for all {{math|''x'' > −2}}.


====Linear approximation for real heights==== =====Linear approximation for real heights=====
] ]
A ] (solution to the continuity requirement, approximation to the differentiability requirement) is given by: A ] (solution to the continuity requirement, approximation to the differentiability requirement) is given by:
Line 399: Line 399:
|} |}


and so on. However, it is only piecewise differentiable; at integer values of x the derivative is multiplied by <math>\ln{a}</math>. It is continuously differentiable for <math>x > -2</math> if and only if <math>a = e</math>. For example, using these methods <math>{}^\frac{\pi}{2}e \approx 5.868...</math> and <math>{}^{-4.3}0.5 \approx 4.03335...</math> and so on. However, it is only piecewise differentiable; at integer values of {{mvar|x}} the derivative is multiplied by <math>\ln{a}</math>. It is continuously differentiable for <math>x > -2</math> if and only if <math>a = e</math>. For example, using these methods <math>{}^\frac{\pi}{2}e \approx 5.868...</math> and <math>{}^{-4.3}0.5 \approx 4.03335...</math>


A main theorem in Hooshmand's paper<ref name="uxp"/> states: Let <math>0 < a \neq 1</math>. If <math>f:(-2, +\infty)\rightarrow \mathbb{R}</math> is continuous and satisfies the conditions: A main theorem in Hooshmand's paper<ref name="uxp"/> states: Let <math>0 < a \neq 1</math>. If <math>f:(-2, +\infty)\rightarrow \mathbb{R}</math> is continuous and satisfies the conditions:


*<math>f(x) = a^{f(x-1)} \;\; \text{for all} \;\; x > -1, \; f(0) = 1,</math> *<math>f(x) = a^{f(x-1)} \;\; \text{for all} \;\; x > -1, \; f(0) = 1,</math>
*<math>f</math> is differentiable on <math>(-1, 0),</math> *<math>f</math> is differentiable on {{open-open|−1, 0}},
*<math>f^\prime</math> is a nondecreasing or nonincreasing function on <math>(-1, 0),</math> *<math>f^\prime</math> is a nondecreasing or nonincreasing function on {{open-open|−1, 0}},
*<math>f^\prime \left(0^+\right) = (\ln a) f^\prime \left(0^-\right) \text{ or } f^\prime \left(-1^+\right) = f^\prime \left(0^-\right).</math> *<math>f^\prime \left(0^+\right) = (\ln a) f^\prime \left(0^-\right) \text{ or } f^\prime \left(-1^+\right) = f^\prime \left(0^-\right).</math>


Line 413: Line 413:
where <math> (x) = x - </math> denotes the fractional part of {{mvar|x}} and <math> \exp^{}_a </math> is the <math> </math>-] of the function <math> \exp_a </math>. where <math> (x) = x - </math> denotes the fractional part of {{mvar|x}} and <math> \exp^{}_a </math> is the <math> </math>-] of the function <math> \exp_a </math>.


The proof is that the second through fourth conditions trivially imply that f is a linear function on . The proof is that the second through fourth conditions trivially imply that {{mvar|f}} is a linear function on {{closed-closed|−1, 0}}.


The linear approximation to natural tetration function <math>{}^xe</math> is continuously differentiable, but its second derivative does not exist at integer values of its argument. Hooshmand derived another uniqueness theorem for it which states: The linear approximation to natural tetration function <math>{}^xe</math> is continuously differentiable, but its second derivative does not exist at integer values of its argument. Hooshmand derived another uniqueness theorem for it which states:
Line 420: Line 420:


*<math> f(x) = e^{f(x-1)} \;\; \text{for all} \;\; x > -1, \; f(0) = 1,</math> *<math> f(x) = e^{f(x-1)} \;\; \text{for all} \;\; x > -1, \; f(0) = 1,</math>
*<math>f</math> is convex on <math>(-1, 0),</math> *<math>f</math> is convex on {{open-open|−1, 0}},
*<math>f^\prime \left(0^-\right) \leq f^\prime \left(0^+\right).</math> *<math>f^\prime \left(0^-\right) \leq f^\prime \left(0^+\right).</math>


then <math>f = \text{uxp}</math>. then <math>f = \text{uxp}</math>.


The proof is much the same as before; the recursion equation ensures that <math>f^\prime (-1^+) = f^\prime (0^+),</math> and then the convexity condition implies that <math>f</math> is linear on (&minus;1, 0). The proof is much the same as before; the recursion equation ensures that <math>f^\prime (-1^+) = f^\prime (0^+),</math> and then the convexity condition implies that <math>f</math> is linear on {{open-open|−1, 0}}.


Therefore, the linear approximation to natural tetration is the only solution of the equation <math>f(x) = e^{f(x-1)} \;\; (x > -1)</math> and <math>f(0) = 1</math> which is ] on <math>(-1, +\infty)</math>. All other sufficiently-differentiable solutions must have an ] on the interval (&minus;1, 0). Therefore, the linear approximation to natural tetration is the only solution of the equation <math>f(x) = e^{f(x-1)} \;\; (x > -1)</math> and <math>f(0) = 1</math> which is ] on {{open-open|−1,+∞}}. All other sufficiently-differentiable solutions must have an ] on the interval {{open-open|−1, 0}}.


===== Higher order approximations for real heights ===== ===== Higher order approximations for real heights =====
] ]
Beyond linear approximations, a ] (to the differentiability requirement) is given by: Beyond linear approximations, a ] (to the differentiability requirement) is given by:
:<math>{}^{x}a \approx \begin{cases} :<math>{}^{x}a \approx \begin{cases}
Line 455: Line 455:
</math>. </math>.


Just as there is a quadratic approximation, cubic approximations and methods for generalizing to approximations of degree ''n'' also exist, although they are much more unwieldy.<ref name="uwu"/><ref name=SolveAnalyt>Andrew Robbins. . The extensions are found in part two of the paper, "Beginning of Results".</ref> Just as there is a quadratic approximation, cubic approximations and methods for generalizing to approximations of degree {{mvar|n}} also exist, although they are much more unwieldy.<ref name="uwu"/><ref name=SolveAnalyt>Andrew Robbins. . The extensions are found in part two of the paper, "Beginning of Results".</ref>


====Complex heights==== ====Complex heights====
Line 473: Line 473:
|doi=10.1007/s10444-017-9524-1 |doi=10.1007/s10444-017-9524-1
|volume=43 |volume=43
}}</ref> that there exists a unique function ''F'' which is a solution of the equation {{nowrap|1=''F''(''z'' + 1) = exp(''F''(''z''))}} and satisfies the additional conditions that ''F''(0) = 1 and ''F''(''z'') approaches the ] of the logarithm (roughly 0.318 ± 1.337''i'') as ''z'' approaches ±''i''∞ and that ''F'' is ] in the whole complex ''z''-plane, except the part of the real axis at ''z'' ≤ −2. This proof confirms a previous ].<ref name="MOC09">{{cite journal }}</ref> that there exists a unique function {{mvar|F}} which is a solution of the equation {{math|1=''F''(''z'' + 1) = exp(''F''(''z''))}} and satisfies the additional conditions that {{math|1=''F''(0) = 1}} and {{math|''F''(''z'')}} approaches the ] of the logarithm (roughly {{math|0.318 ± 1.337''i''}}) as {{mvar|z}} approaches {{math|±''i''∞}} and that {{mvar|F}} is ] in the whole complex {{mvar|z}}-plane, except the part of the real axis at {{math|''z'' ≤ −2}}. This proof confirms a previous ].<ref name="MOC09">{{cite journal
|author=D. Kouznetsov |author=D. Kouznetsov
|title=Solution of <math>F(z + 1) = \exp(F(z))</math> in complex <math>z</math>-plane |title=Solution of <math>F(z + 1) = \exp(F(z))</math> in complex <math>z</math>-plane
Line 485: Line 485:
}}</ref> The complex map of this function is shown in the figure at right. The proof also works for other bases besides ''e'', as long as the base is bigger than <math>e^\frac{1}{e}</math>. The complex double precision approximation of this function is available online.{{citation needed|date=February 2016}}<!-- This function is not ], as there are singularities of <math>F(z)</math> on the real axis at the points <math>z=-2,-3,-4,\ldots</math>.!--> }}</ref> The complex map of this function is shown in the figure at right. The proof also works for other bases besides ''e'', as long as the base is bigger than <math>e^\frac{1}{e}</math>. The complex double precision approximation of this function is available online.{{citation needed|date=February 2016}}<!-- This function is not ], as there are singularities of <math>F(z)</math> on the real axis at the points <math>z=-2,-3,-4,\ldots</math>.!-->


The requirement of the tetration being holomorphic is important for its uniqueness. Many functions <math>S</math> can be constructed as The requirement of the tetration being holomorphic is important for its uniqueness. Many functions {{mvar|S}} can be constructed as
: <math>S(z) = F\!\left(~z~ : <math>S(z) = F\!\left(~z~
+ \sum_{n=1}^{\infty} \sin(2\pi nz)~ \alpha_n + \sum_{n=1}^{\infty} \sin(2\pi nz)~ \alpha_n
Line 492: Line 492:
</math> </math>


where <math>\alpha</math> and <math>\beta</math> are real sequences which decay fast enough to provide the ], at least at moderate values of <math>\Im(z)</math>. where {{mvar|α}} and {{mvar|β}} are real sequences which decay fast enough to provide the ], at least at moderate values of {{math|Im ''z''}}.


The function ''S'' satisfies the tetration equations {{nowrap|1=''S''(''z'' + 1) = exp(''S''(''z''))}}, ''S''(0) = 1, and if ''α<sub>n</sub>'' and ''β<sub>n</sub>'' approach 0 fast enough it will be analytic on a neighborhood of the positive real axis. However, if some elements of {''α''} or {''β''} are not zero, then function ''S'' has multitudes of additional singularities and cutlines in the complex plane, due to the exponential growth of sin and cos along the imaginary axis; the smaller the coefficients {''α''} and {''β''} are, the further away these singularities are from the real axis. The function {{mvar|S}} satisfies the tetration equations {{math|1=''S''(''z'' + 1) = exp(''S''(''z''))}}, {{math|1=''S''(0) = 1}}, and if {{math|''α<sub>n</sub>''}} and {{math|''β<sub>n</sub>''}} approach 0 fast enough it will be analytic on a neighborhood of the positive real axis. However, if some elements of {{math|{''α''}<nowiki/>}} or {{math|{''β''}<nowiki/>}} are not zero, then function {{mvar|S}} has multitudes of additional singularities and cutlines in the complex plane, due to the exponential growth of sin and cos along the imaginary axis; the smaller the coefficients {{math|{''α''}<nowiki/>}} and {{math|{''β''}<nowiki/>}} are, the further away these singularities are from the real axis.


The extension of tetration into the complex plane is thus essential for the uniqueness; the ] tetration is not unique. The extension of tetration into the complex plane is thus essential for the uniqueness; the ] tetration is not unique.


== Non-elementary recursiveness == == Non-elementary recursiveness ==
Tetration (restricted to <math>\mathbb{N}^2</math>) is not an ]. One can prove by induction that for every elementary recursive function ''f'', there is a constant ''c'' such that Tetration (restricted to <math>\mathbb{N}^2</math>) is not an ]. One can prove by induction that for every elementary recursive function {{mvar|f}}, there is a constant {{mvar|c}} such that
:<math>f(x) \leq \underbrace{2^{2^{\cdot^{\cdot^{x}}}}}_c.</math> :<math>f(x) \leq \underbrace{2^{2^{\cdot^{\cdot^{x}}}}}_c.</math>
We denote the right hand side by <math>g(c, x)</math>. Suppose on the contrary that tetration is elementary recursive. <math>g(x, x)+1</math> is also elementary recursive. By the above inequality, there is a constant ''c'' such that <math>g(x,x) +1 \leq g(c, x)</math>. By letting <math>x=c</math>, we have that <math>g(c,c) + 1 \leq g(c, c)</math>, a contradiction. We denote the right hand side by <math>g(c, x)</math>. Suppose on the contrary that tetration is elementary recursive. <math>g(x, x)+1</math> is also elementary recursive. By the above inequality, there is a constant {{mvar|c}} such that <math>g(x,x) +1 \leq g(c, x)</math>. By letting <math>x=c</math>, we have that <math>g(c,c) + 1 \leq g(c, c)</math>, a contradiction.


== Inverse operations == == Inverse operations ==
] has two inverse operations; ] and ]. Analogously, the ]s of tetration are often called the ''super-root'', and the ''super-logarithm'' (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function <math>{^3}y=x</math>, the two inverses are the cube super-root of ''y'' and the super logarithm base ''y'' of ''x''. ] has two inverse operations; ] and ]s. Analogously, the ]s of tetration are often called the ''super-root'', and the ''super-logarithm'' (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function <math>{^3}y=x</math>, the two inverses are the cube super-root of {{mvar|y}} and the super logarithm base&nbsp;{{mvar|y}} of {{mvar|x}}.


===Super-root=== ===Super-root===
{{redir|Super-root|the directory supported by some Unixes|super-root (computing)}} {{redir|Super-root|the directory supported by some Unixes|super-root (computing)}}
The super-root is the inverse operation of tetration with respect to the base: if <math>^n y = x</math>, then ''y'' is an ''n''th super root of ''x'' (<math>\sqrt{x}_s</math> or <math>\sqrt{x}_4</math>). The super-root is the inverse operation of tetration with respect to the base: if <math>^n y = x</math>, then {{mvar|y}} is an {{mvar|n}}th super root of {{mvar|x}} (<math>\sqrt{x}_s</math> or <math>\sqrt{x}_4</math>).


For example, For example,
:<math>^4 2 = 2^{2^{2^{2}}} = 65,536</math> :<math>^4 2 = 2^{2^{2^{2}}} = 65{,}536</math>


so 2 is the 4th super-root of 65,536. so 2 is the 4th super-root of 65,536.


==== Square super-root ==== ==== Square super-root ====
] ]
The ''2nd-order super-root'', ''square super-root'', or ''super square root'' has two equivalent notations, <math>\mathrm{ssrt}(x)</math> and <math>\sqrt{x}_s</math>. It is the inverse of <math>^2 x = x^x</math> and can be represented with the ]:<ref name = "Corless"> The ''2nd-order super-root'', ''square super-root'', or ''super square root'' has two equivalent notations, <math>\mathrm{ssrt}(x)</math> and <math>\sqrt{x}_s</math>. It is the inverse of <math>^2 x = x^x</math> and can be represented with the ]:<ref name = "Corless">
{{cite journal {{cite journal
Line 536: Line 536:
}}</ref> }}</ref>


:<math>\mathrm{ssrt}(x)=e^{W(\mathrm{ln}(x))}=\frac{\mathrm{ln}(x)}{W(\mathrm{ln}(x))}</math> :<math>\mathrm{ssrt}(x)=e^{W(\ln x)}=\frac{\ln x}{W(\ln x)}</math>


The function also illustrates the reflective nature of the root and logarithm functions as the equation below only holds true when <math>y = \mathrm{ssrt}(x)</math>: The function also illustrates the reflective nature of the root and logarithm functions as the equation below only holds true when <math>y = \mathrm{ssrt}(x)</math>:
Line 542: Line 542:
: <math>\sqrt{x} = \log_y x</math> : <math>\sqrt{x} = \log_y x</math>


Like ]s, the square super-root of ''x'' may not have a single solution. Unlike square roots, determining the number of square super-roots of ''x'' may be difficult. In general, if <math>e^{-1/e}<x<1</math>, then ''x'' has two positive square super-roots between 0 and 1; and if <math>x > 1</math>, then ''x'' has one positive square super-root greater than 1. If ''x'' is positive and less than <math>e^{-1/e}</math> it doesn't have any ] square super-roots, but the formula given above yields countably infinitely many ] ones for any finite ''x'' not equal to 1.<ref name = "Corless" /> The function has been used to determine the size of ]s.<ref>Krishnam R. (2004), "" - Dissertation, BOSTON UNIVERSITY, COLLEGE OF ENGINEERING. pp.37-40</ref> Like ]s, the square super-root of {{mvar|x}} may not have a single solution. Unlike square roots, determining the number of square super-roots of {{mvar|x}} may be difficult. In general, if <math>e^{-1/e}<x<1</math>, then {{mvar|x}} has two positive square super-roots between 0 and 1; and if <math>x > 1</math>, then {{mvar|x}} has one positive square super-root greater than 1. If {{mvar|x}} is positive and less than <math>e^{-1/e}</math> it doesn't have any ] square super-roots, but the formula given above yields countably infinitely many ] ones for any finite {{mvar|x}} not equal to 1.<ref name = "Corless" /> The function has been used to determine the size of ]s.<ref>Krishnam R. (2004), "" - Dissertation, BOSTON UNIVERSITY, COLLEGE OF ENGINEERING. pp. 37–40</ref>


==== Other super-roots ==== ==== Other super-roots ====
{x}_s</math>.]] {x}_s</math>.]]
For each integer {{nowrap|''n'' > 2}}, the function ''<sup>n</sup>x'' is defined and increasing for {{nowrap|''x'' ≥ 1}}, and {{nowrap|1=<sup>''n''</sup>1 = 1}}, so that the ''n''th super-root of ''x'', <math>\sqrt{x}_s</math>, exists for {{nowrap|''x'' ≥ 1}}. For each integer {{math|''n'' > 2}}, the function {{math|''<sup>n</sup>x''}} is defined and increasing for {{math|''x'' ≥ 1}}, and {{math|1=<sup>''n''</sup>1 = 1}}, so that the {{mvar|n}}th super-root of {{mvar|x}}, <math>\sqrt{x}_s</math>, exists for {{math|''x'' ≥ 1}}.


However, if the ] is used, then {{nowrap|<math> ^y x = y + 1</math>}} if &minus;1&nbsp;<&nbsp;''y''&nbsp;&nbsp;0, so {{nowrap|<math> ^y \sqrt{y + 1}_s </math>}} cannot exist. However, if the ] is used, then <math> ^y x = y + 1</math> if {{math|−1 < ''y'' 0}}, so <math> ^y \sqrt{y + 1}_s </math> cannot exist.


In the same way as the square super-root, terminology for other super roots can be based on the ]: "cube super-roots" can be expressed as <math>\sqrt{x}_s</math>; the "4th super-root" can be expressed as <math>\sqrt{x}_s</math>; and the "''n''<sup>th</sup> super-root" is <math>\sqrt{x}_s</math>. Note that <math>\sqrt{x}_s</math> may not be uniquely defined, because there may be more than one ''n''<sup>th</sup> root. For example, ''x'' has a single (real) super-root if ''n'' is ''odd'', and up to two if ''n'' is ''even''.{{Citation needed|date=October 2009}} In the same way as the square super-root, terminology for other super roots can be based on the ]: "cube super-roots" can be expressed as <math>\sqrt{x}_s</math>; the "4th super-root" can be expressed as <math>\sqrt{x}_s</math>; and the "{{mvar|n}}th super-root" is <math>\sqrt{x}_s</math>. Note that <math>\sqrt{x}_s</math> may not be uniquely defined, because there may be more than one {{mvar|n}}<sup>th</sup> root. For example, {{mvar|x}} has a single (real) super-root if {{mvar|n}} is ''odd'', and up to two if {{mvar|n}} is ''even''.{{Citation needed|date=October 2009}}


Just as with the extension of tetration to infinite heights, the super-root can be extended to <math> n = \infty </math>, being well-defined if 1/''e'' ≤ ''x'' ≤ ''e''. Note that <math> x = {^\infty y} = y^{\left} = y^x,</math> and thus that <math> y = x^{1/x} </math>. Therefore, when it is well defined, <math> \sqrt{x}_s = x^{1/x} </math> and, unlike normal tetration, is an ]. For example, <math>\sqrt{2}_s = 2^{1/2} = \sqrt{2}</math>. Just as with the extension of tetration to infinite heights, the super-root can be extended to {{math|1=n = ∞}}, being well-defined if {{math|1/''e'' ≤ ''x'' ≤ ''e''}}. Note that <math> x = {^\infty y} = y^{\left} = y^x,</math> and thus that <math> y = x^{1/x} </math>. Therefore, when it is well defined, <math> \sqrt{x}_s = x^{1/x} </math> and, unlike normal tetration, is an ]. For example, <math>\sqrt{2}_s = 2^{1/2} = \sqrt{2}</math>.


It follows from the ] that super-root <math>\sqrt{n}_s</math> for any positive integer ''n'' is either integer or ], and <math>\sqrt{n}_s</math> is either integer or irrational.<ref name="condor.depaul.edu"/> It is still an open question whether irrational super-roots are transcendental in the latter case. It follows from the ] that super-root <math>\sqrt{n}_s</math> for any positive integer {{mvar|n}} is either integer or ], and <math>\sqrt{n}_s</math> is either integer or irrational.<ref name="condor.depaul.edu"/> It is still an open question whether irrational super-roots are transcendental in the latter case.


===Super-logarithm=== ===Super-logarithm===
{{main|Super-logarithm}} {{main|Super-logarithm}}
Once a continuous increasing (in ''x'') definition of tetration, <sup>''x''</sup>''a'', is selected, the corresponding super-logarithm <math>\text{slog}_ax</math> or <math>\text{log}^4_ax</math> is defined for all real numbers ''x'', and ''a''&nbsp;> 1. Once a continuous increasing (in {{mvar|x}}) definition of tetration, {{math|<sup>''x''</sup>''a''}}, is selected, the corresponding super-logarithm <math>\operatorname{slog}_ax</math> or <math>\log^4_ax</math> is defined for all real numbers {{mvar|x}}, and {{math|''a'' > 1}}.


The function slog<sub>''a''</sub> ''x'' satisfies: The function {{math|slog<sub>''a''</sub>''x''}} satisfies:
:<math>\begin{array}{lcl} :<math>\begin{array}{lcl}
\operatorname{slog}_a {^x a} &=& x \\ \operatorname{slog}_a {^x a} &=& x \\
Line 571: Line 571:
==Open questions== ==Open questions==
Other than the problems with the extensions of tetration, there are several open questions concerning tetration, particularly when concerning the relations between number systems such as ]s and ]s: Other than the problems with the extensions of tetration, there are several open questions concerning tetration, particularly when concerning the relations between number systems such as ]s and ]s:
*It is not known whether there is a positive integer ''n'' for which <sup>''n''</sup>] or <sup>''n''</sup>] is an integer. In particular, it is not known whether <sup>4</sup>{{pi}} is an integer. *It is not known whether there is a positive integer {{mvar|n}} for which {{math|<sup>''n''</sup>]}} or {{math|<sup>''n''</sup>]}} is an integer. In particular, it is not known whether {{math|<sup>4</sup>&pi;}} is an integer.
*It is not known whether <sup>''n''</sup>''q'' is an integer for any positive integer ''n'' and positive non-integer rational ''q''.<ref name="condor.depaul.edu"></ref> Particularly, it is not known whether the positive root of the equation {{nowrap|1=<sup>4</sup>''x'' = 2}} is a rational number. *It is not known whether {{math|<sup>''n''</sup>''q''}} is an integer for any positive integer {{mvar|n}} and positive non-integer rational {{mvar|q}}.<ref name="condor.depaul.edu"></ref> Particularly, it is not known whether the positive root of the equation {{math|1=<sup>4</sup>''x'' = 2}} is a rational number.


== See also == == See also ==

Revision as of 17:03, 9 June 2019

Not to be confused with titration.
Domain coloring of the holomorphic tetration z e {\displaystyle {}^{z}e} , with hue representing the function argument and brightness representing magnitude
n x {\displaystyle {}^{n}x} , for n = 2, 3, 4, …, showing convergence to the infinitely iterated exponential between the two dots

In mathematics, tetration (or hyper-4) is iterated, or repeated, exponentiation. It is the next hyperoperation after exponentiation, but before pentation. The word was coined by Reuben Louis Goodstein from tetra- (four) and iteration. Tetration is used for the notation of very large numbers. The notation n a {\displaystyle {^{n}a}} means a a a {\displaystyle {a^{a^{\cdot ^{\cdot ^{a}}}}}} , which is the application of exponentiation n 1 {\displaystyle n-1} times.

The first four hyperoperations are shown here, with tetration being the fourth of these (in this case, the unary operation succession, a = a + 1 {\displaystyle a'=a+1} , is considered to be the zeroth operation).

  1. Addition
    a + n = a + 1 + 1 + + 1 n {\displaystyle a+n=a+\underbrace {1+1+\cdots +1} _{n}}
    n copies of 1 added to a.
  2. Multiplication
    a × n = a + a + + a n {\displaystyle a\times n=\underbrace {a+a+\cdots +a} _{n}}
    n copies of a combined by addition.
  3. Exponentiation
    a n = a × a × × a n {\displaystyle a^{n}=\underbrace {a\times a\times \cdots \times a} _{n}}
    n copies of a combined by multiplication.
  4. Tetration
    n a = a a a n {\displaystyle {^{n}a}=\underbrace {a^{a^{\cdot ^{\cdot ^{a}}}}} _{n}}
    n copies of a combined by exponentiation, right-to-left.

Here, succession (a′ = a + 1) is the most basic operation; addition (a + n) is a primary operation, though for natural numbers it can be thought of as a chained succession of n successors of a; multiplication ((a × n) is also a primary operation, though for natural numbers it can be thought of as a chained addition involving n numbers a. Exponentiation ( a n {\displaystyle a^{n}} ) can be thought of as a chained multiplication involving n numbers a, and analogously, tetration ( n a {\displaystyle ^{n}a} ) can be thought of as a chained power involving n numbers a. Each of the operations above are defined by iterating the previous one; however, unlike the operations before it, tetration is not an elementary function.

The parameter a may be called the base-parameter in the following, while the parameter n in the following may be called the height-parameter (which is integral in the first approach but may be generalized to fractional, real and complex heights, see below). Tetration is read as "the nth tetration of a".

Formal definition

For any positive real a > 0 {\displaystyle a>0} and non-negative integer n 0 {\displaystyle n\geq 0} , we can define n a {\displaystyle \,\!{^{n}a}} recursively as:

n a := { 1 if  n = 0 a ( ( n 1 ) a ) if  n > 0 {\displaystyle {^{n}a}:={\begin{cases}1&{\text{if }}n=0\\a^{\left(^{(n-1)}a\right)}&{\text{if }}n>0\end{cases}}}

This formal definition is equivalent to repeated exponentiation for natural heights; however, this definition allows for extensions to other heights such as 0 a {\displaystyle ^{0}a} , 1 a {\displaystyle ^{-1}a} , and i a {\displaystyle ^{i}a} .

Terminology

There are many terms for tetration, each of which has some logic behind it, but some have not become commonly used for one reason or another. Here is a comparison of each term with its rationale and counter-rationale.

  • The term tetration, introduced by Goodstein in his 1947 paper Transfinite Ordinals in Recursive Number Theory (generalizing the recursive base-representation used in Goodstein's theorem to use higher operations), has gained dominance. It was also popularized in Rudy Rucker's Infinity and the Mind.
  • The term superexponentiation was published by Bromer in his paper Superexponentiation in 1987. It was used earlier by Ed Nelson in his book Predicative Arithmetic, Princeton University Press, 1986.
  • The term hyperpower is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration. So under these considerations hyperpower is misleading, since it is only referring to tetration.
  • The term power tower is occasionally used, in the form "the power tower of order n" for     a a a n {\displaystyle {\ \atop {\ }}{{\underbrace {a^{a^{\cdot ^{\cdot ^{a}}}}} } \atop n}} . This is a misnomer, however, because tetration cannot be expressed with iterated power functions (see above), since it is an iterated exponential function.
  • The term snap is occasionally used in informal contexts, in the form "a snap n" for     a a a n {\displaystyle {\ \atop {\ }}{{\underbrace {a^{a^{\cdot ^{\cdot ^{a}}}}} } \atop n}} . This term is not yet widely accepted, although it is used within select communities. It is believed to be a reference to jounce, the fourth derivative of position in physics, as tetration is the fourth hyperoperation and jounce is also known as snap.

Owing in part to some shared terminology and similar notational symbolism, tetration is often confused with closely related functions and expressions. Here are a few related terms:

Form Terminology
a a a a {\displaystyle a^{a^{\cdot ^{\cdot ^{a^{a}}}}}} Tetration
a a a x {\displaystyle a^{a^{\cdot ^{\cdot ^{a^{x}}}}}} Iterated exponentials
a 1 a 2 a n {\displaystyle a_{1}^{a_{2}^{\cdot ^{\cdot ^{a_{n}}}}}} Nested exponentials (also towers)
a 1 a 2 a 3 {\displaystyle a_{1}^{a_{2}^{a_{3}^{\cdot ^{\cdot ^{\cdot }}}}}} Infinite exponentials (also towers)

In the first two expressions a is the base, and the number of times a appears is the height (add one for x). In the third expression, n is the height, but each of the bases is different.

Care must be taken when referring to iterated exponentials, as it is common to call expressions of this form iterated exponentiation, which is ambiguous, as this can either mean iterated powers or iterated exponentials.

Notation

There are many different notation styles that can be used to express tetration. Some notations can also be used to describe other hyperoperations, while some are limited to tetration and have no immediate extension.

Name Form Description
Rudy Rucker notation n a {\displaystyle \,{}^{n}a} Used by Maurer and Goodstein ; Rudy Rucker's book Infinity and the Mind popularized the notation.
Knuth's up-arrow notation a ↑ ↑ n {\displaystyle a{\uparrow \uparrow }n} Allows extension by putting more arrows, or, even more powerfully, an indexed arrow.
Conway chained arrow notation a n 2 {\displaystyle a\rightarrow n\rightarrow 2} Allows extension by increasing the number 2 (equivalent with the extensions above), but also, even more powerfully, by extending the chain
Ackermann function n 2 = A ( 4 , n 3 ) + 3 {\displaystyle {}^{n}2=\operatorname {A} (4,n-3)+3} Allows the special case a = 2 {\displaystyle a=2} to be written in terms of the Ackermann function.
Iterated exponential notation exp a n ( 1 ) {\displaystyle \exp _{a}^{n}(1)} Allows simple extension to iterated exponentials from initial values other than 1.
Hooshmand notations uxp a n a n {\displaystyle {\begin{aligned}&\operatorname {uxp} _{a}n\\&a^{\frac {n}{}}\end{aligned}}} Used by M. H. Hooshmand .
Hyperoperation notations a [ 4 ] n H 4 ( a , n ) {\displaystyle {\begin{aligned}&an\\&H_{4}(a,n)\end{aligned}}} Allows extension by increasing the number 4; this gives the family of hyperoperations.
Double caret notation a^^n Since the up-arrow is used identically to the caret (^), tetration may be written as (^^); convenient for ASCII.
Bowers's operators
  • {a,b,4}
  • {a,b,4,1}
  • a {4} b
Similar to the hyperoperation notations.

One notation above uses iterated exponential notation; in general this is defined as follows:

exp a n ( x ) = a a a x {\displaystyle \exp _{a}^{n}(x)=a^{a^{\cdot ^{\cdot ^{a^{x}}}}}} with n as.

There are not as many notations for iterated exponentials, but here are a few:

Name Form Description
Standard notation exp a n ( x ) {\displaystyle \exp _{a}^{n}(x)} Euler coined the notation exp a ( x ) = a x {\displaystyle \exp _{a}(x)=a^{x}} , and iteration notation f n ( x ) {\displaystyle f^{n}(x)} has been around about as long.
Knuth's up-arrow notation ( a ) n ( x ) {\displaystyle (a{\uparrow })^{n}(x)} Allows for super-powers and super-exponential function by increasing the number of arrows; used in the article on large numbers.
Text notation exp_a^n(x) Based on standard notation; convenient for ASCII.
J Notation x^^:(n-1)x Repeats the exponentiation. See J (programming language)

Examples

Because of the extremely fast growth of tetration, most values in the following table are too large to write in scientific notation. In these cases, iterated exponential notation is used to express them in base 10. The values containing a decimal point are approximate.

x {\displaystyle x} 2 x {\displaystyle {}^{2}x} 3 x {\displaystyle {}^{3}x} 4 x {\displaystyle {}^{4}x} 5 x {\displaystyle {}^{5}x}
1 1 1 1 1
2 4 16 65,536 2 or (2.00353 × 10)
3 27 7,625,597,484,987 exp 10 3 ( 1.09902 ) {\displaystyle \exp _{10}^{3}(1.09902)} (3.6 × 10 digits) exp 10 4 ( 1.09902 ) {\displaystyle \exp _{10}^{4}(1.09902)}
4 256 1.34078 × 10 exp 10 3 ( 2.18726 ) {\displaystyle \exp _{10}^{3}(2.18726)} (8.1 × 10 digits) exp 10 4 ( 2.18726 ) {\displaystyle \exp _{10}^{4}(2.18726)}
5 3,125 1.91101 × 10 exp 10 3 ( 3.33928 ) {\displaystyle \exp _{10}^{3}(3.33928)} (1.3 × 10 digits) exp 10 4 ( 3.33928 ) {\displaystyle \exp _{10}^{4}(3.33928)}
6 46,656 2.65912 × 10 exp 10 3 ( 4.55997 ) {\displaystyle \exp _{10}^{3}(4.55997)} (2.1 × 10 digits) exp 10 4 ( 4.55997 ) {\displaystyle \exp _{10}^{4}(4.55997)}
7 823,543 3.75982 × 10 exp 10 3 ( 5.84259 ) {\displaystyle \exp _{10}^{3}(5.84259)} (3.2 × 10 digits) exp 10 4 ( 5.84259 ) {\displaystyle \exp _{10}^{4}(5.84259)}
8 16,777,216 6.01452 × 10 exp 10 3 ( 7.18045 ) {\displaystyle \exp _{10}^{3}(7.18045)} (5.4 × 10 digits) exp 10 4 ( 7.18045 ) {\displaystyle \exp _{10}^{4}(7.18045)}
9 387,420,489 4.28125 × 10 exp 10 3 ( 8.56784 ) {\displaystyle \exp _{10}^{3}(8.56784)} (4.1 × 10 digits) exp 10 4 ( 8.56784 ) {\displaystyle \exp _{10}^{4}(8.56784)}
10 10,000,000,000 10 exp 10 3 ( 10 ) {\displaystyle \exp _{10}^{3}(10)} (10 digits) exp 10 4 ( 10 ) {\displaystyle \exp _{10}^{4}(10)}

Properties

Tetration has several properties that are similar to exponentiation, as well as properties that are specific to the operation and are lost or gained from exponentiation. Because exponentiation does not commute, the product and power rules do not have an analogue with tetration; the statements a ( b x ) = ( a b x ) {\textstyle {}^{a}\left({}^{b}x\right)=\left({}^{ab}x\right)} and a ( x y ) = a x a y {\textstyle {}^{a}\left(xy\right)={}^{a}x{}^{a}y} are not necessarily true for all cases.

However, tetration does follow a different property, in which a x = x ( a 1 x ) {\textstyle {}^{a}x=x^{\left({}^{a-1}x\right)}} . This fact is most clearly shown using the recursive definition. From this property, a proof follows that ( b a ) ( c a ) = ( c + 1 a ) ( b 1 a ) {\displaystyle \left({}^{b}a\right)^{\left({}^{c}a\right)}=\left({}^{c+1}a\right)^{\left({}^{b-1}a\right)}} , which allows for switching b and c in certain equations. The proof goes as follows:

( b a ) ( c a ) = ( a b 1 a ) ( c a ) = a ( b 1 a ) ( c a ) = a ( c a ) ( b 1 a ) = ( c + 1 a ) ( b 1 a ) {\displaystyle {\begin{aligned}&\left({}^{b}a\right)^{\left({}^{c}a\right)}\\={}&\left(a^{{}^{b-1}a}\right)^{\left({}^{c}a\right)}\\={}&a^{\left({}^{b-1}a\right)\left({}^{c}a\right)}\\={}&a^{\left({}^{c}a\right)\left({}^{b-1}a\right)}\\={}&\left({}^{c+1}a\right)^{\left({}^{b-1}a\right)}\end{aligned}}}

When a number x and 10 are coprime, it is possible to compute the last m decimal digits of   a x {\displaystyle \,\!\ ^{a}x} using Euler's theorem, for any integer m.

Direction of evaluation

When evaluating tetration expressed as an "exponentiation tower", the exponentiation is done at the deepest level first (in the notation, at the apex). For example:

  4 2 = 2 2 2 2 = 2 ( 2 ( 2 2 ) ) = 2 ( 2 4 ) = 2 16 = 65 , 536 {\displaystyle \,\!\ ^{4}2=2^{2^{2^{2}}}=2^{\left(2^{\left(2^{2}\right)}\right)}=2^{\left(2^{4}\right)}=2^{16}=65,\!536}

This order is important because exponentiation is not associative, and evaluating the expression in the opposite order will lead to a different answer:

2 2 2 2 ( ( 2 2 ) 2 ) 2 = 4 2 2 = 256 {\displaystyle \,\!2^{2^{2^{2}}}\neq \left({\left(2^{2}\right)}^{2}\right)^{2}=4^{2\cdot 2}=256}

Evaluating the expression the left to right is considered less interesting; evaluating left to right, any expression n a {\displaystyle ^{n}a} can be simplified to be a ( a n 1 ) {\displaystyle a^{\left(a^{n-1}\right)}} . Because of this, the towers must be evaluated from right to left (or top to bottom). Computer programmers refer to this choice as right-associative.

Extensions

Tetration can be extended in two different ways; in the equation n a {\displaystyle ^{n}a} , both the base a and the height n can be generalized using the definition and properties of tetration. Although the base and the height can be extended beyond the positive integers to different domains, including n 0 {\displaystyle {^{n}0}} , complex functions such as n i {\displaystyle {}^{n}i} , and heights of infinite n, the more limited properties of tetration reduce the ability to extend tetration.

Extension of domain for bases

Base zero

The exponential 0 0 {\displaystyle 0^{0}} is not consistently defined. Thus, the tetrations n 0 {\displaystyle \,{^{n}0}} are not clearly defined by the formula given earlier. However, lim x 0 n x {\displaystyle \lim _{x\rightarrow 0}{}^{n}x} is well defined, and exists:

lim x 0 n x = { 1 , n  even 0 , n  odd {\displaystyle \lim _{x\rightarrow 0}{}^{n}x={\begin{cases}1,&n{\text{ even}}\\0,&n{\text{ odd}}\end{cases}}}

Thus we could consistently define n 0 = lim x 0 n x {\displaystyle {}^{n}0=\lim _{x\rightarrow 0}{}^{n}x} . This is equivalent to defining 0 0 = 1 {\displaystyle 0^{0}=1} .

Under this extension, 0 0 = 1 {\displaystyle {}^{0}0=1} , so the rule 0 a = 1 {\displaystyle {^{0}a}=1} from the original definition still holds.

Complex bases

Tetration by period
Tetration by escape

Since complex numbers can be raised to powers, tetration can be applied to bases of the form z = a + bi (where a and b are real). For example, in z with z = i, tetration is achieved by using the principal branch of the natural logarithm; using Euler's formula we get the relation:

i a + b i = e 1 2 π i ( a + b i ) = e 1 2 π b ( cos π a 2 + i sin π a 2 ) {\displaystyle i^{a+bi}=e^{{\frac {1}{2}}{\pi i}(a+bi)}=e^{-{\frac {1}{2}}{\pi b}}\left(\cos {\frac {\pi a}{2}}+i\sin {\frac {\pi a}{2}}\right)}

This suggests a recursive definition for i = a′ + b′i given any i = a + bi:

a = e 1 2 π b cos π a 2 b = e 1 2 π b sin π a 2 {\displaystyle {\begin{aligned}a'&=e^{-{\frac {1}{2}}{\pi b}}\cos {\frac {\pi a}{2}}\\b'&=e^{-{\frac {1}{2}}{\pi b}}\sin {\frac {\pi a}{2}}\end{aligned}}}

The following approximate values can be derived:

n i {\textstyle {}^{n}i} Approximate value
1 i = i {\textstyle {}^{1}i=i} i
2 i = i ( 1 i ) {\textstyle {}^{2}i=i^{\left({}^{1}i\right)}} 0.2079
3 i = i ( 2 i ) {\textstyle {}^{3}i=i^{\left({}^{2}i\right)}} 0.9472 + 0.3208i
4 i = i ( 3 i ) {\textstyle {}^{4}i=i^{\left({}^{3}i\right)}} 0.0501 + 0.6021i
5 i = i ( 4 i ) {\textstyle {}^{5}i=i^{\left({}^{4}i\right)}} 0.3872 + 0.0305i
6 i = i ( 5 i ) {\textstyle {}^{6}i=i^{\left({}^{5}i\right)}} 0.7823 + 0.5446i
7 i = i ( 6 i ) {\textstyle {}^{7}i=i^{\left({}^{6}i\right)}} 0.1426 + 0.4005i
8 i = i ( 7 i ) {\textstyle {}^{8}i=i^{\left({}^{7}i\right)}} 0.5198 + 0.1184i
9 i = i ( 8 i ) {\textstyle {}^{9}i=i^{\left({}^{8}i\right)}} 0.5686 + 0.6051i

Solving the inverse relation, as in the previous section, yields the expected i = 1 and i = 0, with negative values of n giving infinite results on the imaginary axis. Plotted in the complex plane, the entire sequence spirals to the limit 0.4383 + 0.3606i, which could be interpreted as the value where n is infinite.

Such tetration sequences have been studied since the time of Euler, but are poorly understood due to their chaotic behavior. Most published research historically has focused on the convergence of the infinitely iterated exponential function. Current research has greatly benefited by the advent of powerful computers with fractal and symbolic mathematics software. Much of what is known about tetration comes from general knowledge of complex dynamics and specific research of the exponential map.

Extensions of the domain for different "heights"

Infinite heights

lim n n x {\displaystyle \textstyle \lim _{n\rightarrow \infty }{}^{n}x} of the infinitely iterated exponential converges for the bases ( e 1 ) e x e ( e 1 ) {\displaystyle \textstyle \left(e^{-1}\right)^{e}\leq x\leq e^{\left(e^{-1}\right)}}
The function | W ( ln z ) ln z | {\displaystyle \left|{\frac {\mathrm {W} (-\ln {z})}{-\ln {z}}}\right|} on the complex plane, showing the real-valued infinitely iterated exponential function (black curve)

Tetration can be extended to infinite heights; i.e., for certain a and n values in n a {\displaystyle {}^{n}a} , there exists a well defined result for an infinite n. This is because for bases within a certain interval, tetration converges to a finite value as the height tends to infinity. For example, 2 2 2 {\displaystyle {\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{\cdot ^{\cdot ^{\cdot }}}}}} converges to 2, and can therefore be said to be equal to 2. The trend towards 2 can be seen by evaluating a small finite tower:

2 2 2 2 2 1.414 2 2 2 2 1.63 2 2 2 1.76 2 2 1.84 2 1.89 1.93 {\displaystyle {\begin{aligned}{\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{1.414}}}}}&\approx {\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{1.63}}}}\\&\approx {\sqrt {2}}^{{\sqrt {2}}^{{\sqrt {2}}^{1.76}}}\\&\approx {\sqrt {2}}^{{\sqrt {2}}^{1.84}}\\&\approx {\sqrt {2}}^{1.89}\\&\approx 1.93\end{aligned}}}

In general, the infinitely iterated exponential x x {\displaystyle x^{x^{\cdot ^{\cdot ^{\cdot }}}}} , defined as the limit of n x {\displaystyle {}^{n}x} as n goes to infinity, converges for exe, roughly the interval from 0.066 to 1.44, a result shown by Leonhard Euler. The limit, should it exist, is a positive real solution of the equation y = x. Thus, x = y. The limit defining the infinite tetration of x fails to converge for x > e because the maximum of y is e.

This may be extended to complex numbers z with the definition:

z = z z = W ( ln z ) ln z   , {\displaystyle {}^{\infty }z=z^{z^{\cdot ^{\cdot ^{\cdot }}}}={\frac {\mathrm {W} (-\ln {z})}{-\ln {z}}}~,}

where W represents Lambert's W function.

As the limit y = x (if existent, i.e. for e < x < e) must satisfy x = y we see that xy = x is (the lower branch of) the inverse function of yx = y.

Negative heights

We can use the recursive rule for tetration,

k + 1 a = a ( k a ) , {\displaystyle {^{k+1}a}=a^{\left({^{k}a}\right)},}

to prove 1 a {\displaystyle {}^{-1}a} :

k a = log a ( k + 1 a ) ; {\displaystyle ^{k}a=\log _{a}\left(^{k+1}a\right);}

Substituting −1 for k gives

1 a = log a ( 0 a ) = log a 1 = 0 {\displaystyle {}^{-1}a=\log _{a}\left({}^{0}a\right)=\log _{a}1=0} .

Smaller negative values cannot be well defined in this way. Substituting −2 for k in the same equation gives

2 a = log a ( 1 a ) = log a 0 {\displaystyle {}^{-2}a=\log _{a}\left({}^{-1}a\right)=\log _{a}0}

which is not well defined. They can, however, sometimes be considered sets.

For n = 1 {\displaystyle n=1} , any definition of 1 1 {\displaystyle \,\!{^{-1}1}} is consistent with the rule because

0 1 = 1 = 1 n {\displaystyle {^{0}1}=1=1^{n}} for any n = 1 1 {\displaystyle \,\!n={^{-1}1}} .

Real heights

At this time there is no commonly accepted solution to the general problem of extending tetration to the real or complex values of n. There have, however, been multiple approaches towards the issue, and different approaches are outlined below.

In general the problem is finding, for any real a > 0, a super-exponential function f ( x ) = x a {\displaystyle \,f(x)={}^{x}a} over real x > −2 that satisfies

  • 1 a = 0 {\displaystyle \,{}^{-1}a=0}
  • 0 a = 1 {\displaystyle \,{}^{0}a=1}
  • x a = a ( x 1 a ) {\displaystyle \,{}^{x}a=a^{\left({}^{x-1}a\right)}} for all real x > 1. {\displaystyle x>-1.}

To find a more natural extension, one or more extra requirements are usually required. This is usually some collection of the following:

  • A continuity requirement (usually just that x a {\displaystyle {}^{x}a} is continuous in both variables for x > 0 {\displaystyle x>0} ).
  • A differentiability requirement (can be once, twice, k times, or infinitely differentiable in x).
  • A regularity requirement (implying twice differentiable in x) that:
( d 2 d x 2 f ( x ) > 0 ) {\displaystyle \left({\frac {d^{2}}{dx^{2}}}f(x)>0\right)} for all x > 0 {\displaystyle x>0}

The fourth requirement differs from author to author, and between approaches. There are two main approaches to extending tetration to real heights; one is based on the regularity requirement, and one is based on the differentiability requirement. These two approaches seem to be so different that they may not be reconciled, as they produce results inconsistent with each other.

When x a {\displaystyle \,{}^{x}a} is defined for an interval of length one, the whole function easily follows for all x > −2.

Linear approximation for real heights
x e {\displaystyle \,{}^{x}e} using linear approximation.

A linear approximation (solution to the continuity requirement, approximation to the differentiability requirement) is given by:

x a { log a ( x + 1 a ) x 1 1 + x 1 < x 0 a ( x 1 a ) 0 < x {\displaystyle {}^{x}a\approx {\begin{cases}\log _{a}\left(^{x+1}a\right)&x\leq -1\\1+x&-1<x\leq 0\\a^{\left(^{x-1}a\right)}&0<x\end{cases}}}

hence:

Approximation Domain
x a x + 1 {\textstyle {}^{x}a\approx x+1} for −1 < x < 0
x a a x {\textstyle {}^{x}a\approx a^{x}} for 0 < x < 1
x a a a ( x 1 ) {\textstyle {}^{x}a\approx a^{a^{(x-1)}}} for 1 < x < 2

and so on. However, it is only piecewise differentiable; at integer values of x the derivative is multiplied by ln a {\displaystyle \ln {a}} . It is continuously differentiable for x > 2 {\displaystyle x>-2} if and only if a = e {\displaystyle a=e} . For example, using these methods π 2 e 5.868... {\displaystyle {}^{\frac {\pi }{2}}e\approx 5.868...} and 4.3 0.5 4.03335... {\displaystyle {}^{-4.3}0.5\approx 4.03335...}

A main theorem in Hooshmand's paper states: Let 0 < a 1 {\displaystyle 0<a\neq 1} . If f : ( 2 , + ) R {\displaystyle f:(-2,+\infty )\rightarrow \mathbb {R} } is continuous and satisfies the conditions:

  • f ( x ) = a f ( x 1 ) for all x > 1 , f ( 0 ) = 1 , {\displaystyle f(x)=a^{f(x-1)}\;\;{\text{for all}}\;\;x>-1,\;f(0)=1,}
  • f {\displaystyle f} is differentiable on (−1, 0),
  • f {\displaystyle f^{\prime }} is a nondecreasing or nonincreasing function on (−1, 0),
  • f ( 0 + ) = ( ln a ) f ( 0 )  or  f ( 1 + ) = f ( 0 ) . {\displaystyle f^{\prime }\left(0^{+}\right)=(\ln a)f^{\prime }\left(0^{-}\right){\text{ or }}f^{\prime }\left(-1^{+}\right)=f^{\prime }\left(0^{-}\right).}

then f {\displaystyle f} is uniquely determined through the equation

f ( x ) = exp a [ x ] ( a ( x ) ) = exp a [ x + 1 ] ( ( x ) ) for all x > 2 , {\displaystyle f(x)=\exp _{a}^{}\left(a^{(x)}\right)=\exp _{a}^{}((x))\quad {\text{for all}}\;\;x>-2,}

where ( x ) = x [ x ] {\displaystyle (x)=x-} denotes the fractional part of x and exp a [ x ] {\displaystyle \exp _{a}^{}} is the [ x ] {\displaystyle } -iterated function of the function exp a {\displaystyle \exp _{a}} .

The proof is that the second through fourth conditions trivially imply that f is a linear function on [−1, 0].

The linear approximation to natural tetration function x e {\displaystyle {}^{x}e} is continuously differentiable, but its second derivative does not exist at integer values of its argument. Hooshmand derived another uniqueness theorem for it which states:

If f : ( 2 , + ) R {\displaystyle f:(-2,+\infty )\rightarrow \mathbb {R} } is a continuous function that satisfies:

  • f ( x ) = e f ( x 1 ) for all x > 1 , f ( 0 ) = 1 , {\displaystyle f(x)=e^{f(x-1)}\;\;{\text{for all}}\;\;x>-1,\;f(0)=1,}
  • f {\displaystyle f} is convex on (−1, 0),
  • f ( 0 ) f ( 0 + ) . {\displaystyle f^{\prime }\left(0^{-}\right)\leq f^{\prime }\left(0^{+}\right).}

then f = uxp {\displaystyle f={\text{uxp}}} . [Here f = uxp {\displaystyle f={\text{uxp}}} is Hooshmand's name for the linear approximation to the natural tetration function.]

The proof is much the same as before; the recursion equation ensures that f ( 1 + ) = f ( 0 + ) , {\displaystyle f^{\prime }(-1^{+})=f^{\prime }(0^{+}),} and then the convexity condition implies that f {\displaystyle f} is linear on (−1, 0).

Therefore, the linear approximation to natural tetration is the only solution of the equation f ( x ) = e f ( x 1 ) ( x > 1 ) {\displaystyle f(x)=e^{f(x-1)}\;\;(x>-1)} and f ( 0 ) = 1 {\displaystyle f(0)=1} which is convex on (−1, +∞). All other sufficiently-differentiable solutions must have an inflection point on the interval (−1, 0).

Higher order approximations for real heights
a comparison of the linear and quadratic approximations (in red and blue respectively) of the function x 0.5 {\displaystyle ^{x}0.5} , from x = −2 to x = 2.

Beyond linear approximations, a quadratic approximation (to the differentiability requirement) is given by:

x a { log a ( x + 1 a ) x 1 1 + 2 ln ( a ) 1 + ln ( a ) x 1 ln ( a ) 1 + ln ( a ) x 2 1 < x 0 a ( x 1 a ) x > 0 {\displaystyle {}^{x}a\approx {\begin{cases}\log _{a}\left({}^{x+1}a\right)&x\leq -1\\1+{\frac {2\ln(a)}{1\;+\;\ln(a)}}x-{\frac {1\;-\;\ln(a)}{1\;+\;\ln(a)}}x^{2}&-1<x\leq 0\\a^{\left({}^{x-1}a\right)}&x>0\end{cases}}}

which is differentiable for all x > 0 {\displaystyle x>0} , but not twice differentiable. For example, 1 2 2 1.45933... {\displaystyle {}^{\frac {1}{2}}2\approx 1.45933...} If a = e {\displaystyle a=e} this is the same as the linear approximation.

Note that because of the way it is calculated, this function does not "cancel out", contrary to exponents, where ( a 1 n ) n = a {\displaystyle \left(a^{\frac {1}{n}}\right)^{n}=a} . Namely,

n ( 1 n a ) = ( 1 n a ) ( 1 n a ) ( 1 n a ) n a {\displaystyle {}^{n}\left({}^{\frac {1}{n}}a\right)=\underbrace {\left({}^{\frac {1}{n}}a\right)^{\left({}^{\frac {1}{n}}a\right)^{\cdot ^{\cdot ^{\cdot ^{\cdot ^{\left({}^{\frac {1}{n}}a\right)}}}}}}} _{n}\neq a} .

Just as there is a quadratic approximation, cubic approximations and methods for generalizing to approximations of degree n also exist, although they are much more unwieldy.

Complex heights

Drawing of the analytic extension f = F ( x + i y ) {\displaystyle f=F(x+{\rm {i}}y)} of tetration to the complex plane. Levels | f | = 1 , e ± 1 , e ± 2 , {\displaystyle |f|=1,e^{\pm 1},e^{\pm 2},\ldots } and levels arg ( f ) = 0 , ± 1 , ± 2 , {\displaystyle \arg(f)=0,\pm 1,\pm 2,\ldots } are shown with thick curves.

It has now been proven that there exists a unique function F which is a solution of the equation F(z + 1) = exp(F(z)) and satisfies the additional conditions that F(0) = 1 and F(z) approaches the fixed points of the logarithm (roughly 0.318 ± 1.337i) as z approaches ±i∞ and that F is holomorphic in the whole complex z-plane, except the part of the real axis at z ≤ −2. This proof confirms a previous conjecture. The complex map of this function is shown in the figure at right. The proof also works for other bases besides e, as long as the base is bigger than e 1 e {\displaystyle e^{\frac {1}{e}}} . The complex double precision approximation of this function is available online.

The requirement of the tetration being holomorphic is important for its uniqueness. Many functions S can be constructed as

S ( z ) = F (   z   + n = 1 sin ( 2 π n z )   α n + n = 1 ( 1 cos ( 2 π n z ) )   β n ) {\displaystyle S(z)=F\!\left(~z~+\sum _{n=1}^{\infty }\sin(2\pi nz)~\alpha _{n}+\sum _{n=1}^{\infty }{\Big (}1-\cos(2\pi nz){\Big )}~\beta _{n}\right)}

where α and β are real sequences which decay fast enough to provide the convergence of the series, at least at moderate values of Im z.

The function S satisfies the tetration equations S(z + 1) = exp(S(z)), S(0) = 1, and if αn and βn approach 0 fast enough it will be analytic on a neighborhood of the positive real axis. However, if some elements of {α} or {β} are not zero, then function S has multitudes of additional singularities and cutlines in the complex plane, due to the exponential growth of sin and cos along the imaginary axis; the smaller the coefficients {α} and {β} are, the further away these singularities are from the real axis.

The extension of tetration into the complex plane is thus essential for the uniqueness; the real-analytic tetration is not unique.

Non-elementary recursiveness

Tetration (restricted to N 2 {\displaystyle \mathbb {N} ^{2}} ) is not an elementary recursive function. One can prove by induction that for every elementary recursive function f, there is a constant c such that

f ( x ) 2 2 x c . {\displaystyle f(x)\leq \underbrace {2^{2^{\cdot ^{\cdot ^{x}}}}} _{c}.}

We denote the right hand side by g ( c , x ) {\displaystyle g(c,x)} . Suppose on the contrary that tetration is elementary recursive. g ( x , x ) + 1 {\displaystyle g(x,x)+1} is also elementary recursive. By the above inequality, there is a constant c such that g ( x , x ) + 1 g ( c , x ) {\displaystyle g(x,x)+1\leq g(c,x)} . By letting x = c {\displaystyle x=c} , we have that g ( c , c ) + 1 g ( c , c ) {\displaystyle g(c,c)+1\leq g(c,c)} , a contradiction.

Inverse operations

Exponentiation has two inverse operations; roots and logarithms. Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function 3 y = x {\displaystyle {^{3}}y=x} , the two inverses are the cube super-root of y and the super logarithm base y of x.

Super-root

"Super-root" redirects here. For the directory supported by some Unixes, see super-root (computing).

The super-root is the inverse operation of tetration with respect to the base: if n y = x {\displaystyle ^{n}y=x} , then y is an nth super root of x ( x n s {\displaystyle {\sqrt{x}}_{s}} or x n 4 {\displaystyle {\sqrt{x}}_{4}} ).

For example,

4 2 = 2 2 2 2 = 65,536 {\displaystyle ^{4}2=2^{2^{2^{2}}}=65{,}536}

so 2 is the 4th super-root of 65,536.

Square super-root

The graph y = x s {\displaystyle y={\sqrt {x}}_{s}} .

The 2nd-order super-root, square super-root, or super square root has two equivalent notations, s s r t ( x ) {\displaystyle \mathrm {ssrt} (x)} and x s {\displaystyle {\sqrt {x}}_{s}} . It is the inverse of 2 x = x x {\displaystyle ^{2}x=x^{x}} and can be represented with the Lambert W function:

s s r t ( x ) = e W ( ln x ) = ln x W ( ln x ) {\displaystyle \mathrm {ssrt} (x)=e^{W(\ln x)}={\frac {\ln x}{W(\ln x)}}}

The function also illustrates the reflective nature of the root and logarithm functions as the equation below only holds true when y = s s r t ( x ) {\displaystyle y=\mathrm {ssrt} (x)} :

x y = log y x {\displaystyle {\sqrt{x}}=\log _{y}x}

Like square roots, the square super-root of x may not have a single solution. Unlike square roots, determining the number of square super-roots of x may be difficult. In general, if e 1 / e < x < 1 {\displaystyle e^{-1/e}<x<1} , then x has two positive square super-roots between 0 and 1; and if x > 1 {\displaystyle x>1} , then x has one positive square super-root greater than 1. If x is positive and less than e 1 / e {\displaystyle e^{-1/e}} it doesn't have any real square super-roots, but the formula given above yields countably infinitely many complex ones for any finite x not equal to 1. The function has been used to determine the size of data clusters.

Other super-roots

The graph y = x 3 s {\displaystyle y={\sqrt{x}}_{s}} .

For each integer n > 2, the function x is defined and increasing for x ≥ 1, and 1 = 1, so that the nth super-root of x, x n s {\displaystyle {\sqrt{x}}_{s}} , exists for x ≥ 1.

However, if the linear approximation above is used, then y x = y + 1 {\displaystyle ^{y}x=y+1} if −1 < y ≤ 0, so y y + 1 s {\displaystyle ^{y}{\sqrt {y+1}}_{s}} cannot exist.

In the same way as the square super-root, terminology for other super roots can be based on the normal roots: "cube super-roots" can be expressed as x 3 s {\displaystyle {\sqrt{x}}_{s}} ; the "4th super-root" can be expressed as x 4 s {\displaystyle {\sqrt{x}}_{s}} ; and the "nth super-root" is x n s {\displaystyle {\sqrt{x}}_{s}} . Note that x n s {\displaystyle {\sqrt{x}}_{s}} may not be uniquely defined, because there may be more than one n root. For example, x has a single (real) super-root if n is odd, and up to two if n is even.

Just as with the extension of tetration to infinite heights, the super-root can be extended to n = ∞, being well-defined if 1/exe. Note that x = y = y [ y ] = y x , {\displaystyle x={^{\infty }y}=y^{\left}=y^{x},} and thus that y = x 1 / x {\displaystyle y=x^{1/x}} . Therefore, when it is well defined, x s = x 1 / x {\displaystyle {\sqrt{x}}_{s}=x^{1/x}} and, unlike normal tetration, is an elementary function. For example, 2 s = 2 1 / 2 = 2 {\displaystyle {\sqrt{2}}_{s}=2^{1/2}={\sqrt {2}}} .

It follows from the Gelfond–Schneider theorem that super-root n s {\displaystyle {\sqrt {n}}_{s}} for any positive integer n is either integer or transcendental, and n 3 s {\displaystyle {\sqrt{n}}_{s}} is either integer or irrational. It is still an open question whether irrational super-roots are transcendental in the latter case.

Super-logarithm

Main article: Super-logarithm

Once a continuous increasing (in x) definition of tetration, a, is selected, the corresponding super-logarithm slog a x {\displaystyle \operatorname {slog} _{a}x} or log a 4 x {\displaystyle \log _{a}^{4}x} is defined for all real numbers x, and a > 1.

The function slogax satisfies:

slog a x a = x slog a a x = 1 + slog a x slog a x = 1 + slog a log a x slog a x > 2 {\displaystyle {\begin{array}{lcl}\operatorname {slog} _{a}{^{x}a}&=&x\\\operatorname {slog} _{a}a^{x}&=&1+\operatorname {slog} _{a}x\\\operatorname {slog} _{a}x&=&1+\operatorname {slog} _{a}\log _{a}x\\\operatorname {slog} _{a}x&>&-2\end{array}}}

Open questions

Other than the problems with the extensions of tetration, there are several open questions concerning tetration, particularly when concerning the relations between number systems such as integers and irrational numbers:

  • It is not known whether there is a positive integer n for which π or e is an integer. In particular, it is not known whether π is an integer.
  • It is not known whether q is an integer for any positive integer n and positive non-integer rational q. Particularly, it is not known whether the positive root of the equation x = 2 is a rational number.

See also

References

  1. R. L. Goodstein (1947). "Transfinite ordinals in recursive number theory". Journal of Symbolic Logic. 12 (4): 123–129. doi:10.2307/2266486. JSTOR 2266486.
  2. N. Bromer (1987). "Superexponentiation". Mathematics Magazine. 60 (3): 169–174. JSTOR 2689566.
  3. J. F. MacDonnell (1989). "Somecritical points of the hyperpower function x x {\displaystyle x^{x^{\dots }}} ". International Journal of Mathematical Education. 20 (2): 297–305. doi:10.1080/0020739890200210. MR 0994348.
  4. Weisstein, Eric W. "Power Tower". MathWorld.
  5. ^ M. H. Hooshmand, (2006). "Ultra power and ultra exponential functions". Integral Transforms and Special Functions. 17 (8): 549–558. doi:10.1080/10652460500422247.{{cite journal}}: CS1 maint: extra punctuation (link)
  6. "Power Verb". J Vocabulary. J Software. Retrieved 28 October 2011.
  7. Alexander Meiburg. (2014). Analytic Extension of Tetration Through the Product Power-Tower Retrieved November 29, 2018
  8. ^ Müller, M. "Reihenalgebra: What comes beyond exponentiation?" (PDF). Retrieved 12 December 2018.
  9. "Climbing the ladder of hyper operators: tetration". George Daccache. January 5, 2015. Retrieved 18 February 2016.
  10. Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." Acta Acad. Scient. Petropol. 2, 29–51, 1783. Reprinted in Euler, L. Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. Leipzig, Germany: Teubner, pp. 350–369, 1921. (facsimile)
  11. Trappmann, Henryk; Kouznetsov, Dmitrii (June 28, 2010). "5+ methods for real analytic tetration" (PDF). Retrieved 5 December 2018. {{cite web}}: Cite has empty unknown parameter: |1= (help)
  12. ^ Neyrinck, Mark. An Investigation of Arithmetic Operations. Retrieved 9 January 2019.
  13. Andrew Robbins. Solving for the Analytic Piecewise Extension of Tetration and the Super-logarithm. The extensions are found in part two of the paper, "Beginning of Results".
  14. W. Paulsen and S. Cowgill (March 2017). "Solving F ( z + 1 ) = b F ( z ) {\displaystyle F(z+1)=b^{F(z)}} in the complex plane" (PDF). Advances in Computational Mathematics. 43: 1–22. doi:10.1007/s10444-017-9524-1.
  15. D. Kouznetsov (July 2009). "Solution of F ( z + 1 ) = exp ( F ( z ) ) {\displaystyle F(z+1)=\exp(F(z))} in complex z {\displaystyle z} -plane" (PDF). Mathematics of Computation. 78 (267): 1647–1670. doi:10.1090/S0025-5718-09-02188-7.
  16. ^ Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E. (1996). "On the Lambert W function" (PostScript). Advances in Computational Mathematics. 5: 333. arXiv:1809.07369. doi:10.1007/BF02124750.
  17. Krishnam R. (2004), "Efficient Self-Organization Of Large Wireless Sensor Networks" - Dissertation, BOSTON UNIVERSITY, COLLEGE OF ENGINEERING. pp. 37–40
  18. ^ Marshall, Ash J., and Tan, Yiren, "A rational number of the form a with a irrational", Mathematical Gazette 96, March 2012, pp. 106–109.
Hyperoperations
Primary
Inverse for left argument
Inverse for right argument
Related articles
Large numbers
Examples
in
numerical
order
Expression
methods
Notations
Operators
Related
articles
(alphabetical
order)
Categories:
Tetration: Difference between revisions Add topic