Revision as of 12:23, 19 October 2010 editAfricangenesis (talk | contribs)Extended confirmed users1,174 edits →since when is peer review pubs, cited by other literature and not contradicted in 3 years insufficient?: new section← Previous edit | Revision as of 12:24, 19 October 2010 edit undoSyrthiss (talk | contribs)36,785 editsm Reverted edits by Africangenesis (talk) to last version by Tony SidawayNext edit → | ||
Line 186: | Line 186: | ||
I've removed this reference to a single paper for now. It was added today by Africangenesis. How well accepted is Wentz? Has it been replicated? Does the paper support the statement in which it is cited? --] 12:00, 19 October 2010 (UTC) | I've removed this reference to a single paper for now. It was added today by Africangenesis. How well accepted is Wentz? Has it been replicated? Does the paper support the statement in which it is cited? --] 12:00, 19 October 2010 (UTC) | ||
:The paper proper does mention the discrepancy, but with a few caveats. It does not mention the possible reduction in droughts. --] (]) 12:14, 19 October 2010 (UTC) | :The paper proper does mention the discrepancy, but with a few caveats. It does not mention the possible reduction in droughts. --] (]) 12:14, 19 October 2010 (UTC) | ||
:: Well that's what I'm getting at. It sounds like a reasonable conjecture but I'd like to see if the point about the effect on drought predictions has been made by people who (unlike me) know what they're talking about. | |||
:: Would I be right to assume that this paper was accepted for publication too late to make the IPCC AR4 of 2007? --] 12:22, 19 October 2010 (UTC) |
Revision as of 12:24, 19 October 2010
This article and its editors are subject to Misplaced Pages general sanctions. See the description of the sanctions. |
Skip to table of contents |
This is the talk page for discussing improvements to the Climate change article. This is not a forum for general discussion of the article's subject. |
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96Auto-archiving period: 21 days |
The subject of this article is controversial and content may be in dispute. When updating the article, be bold, but not reckless. Feel free to try to improve the article, but don't take it personally if your changes are reversed; instead, come here to the talk page to discuss them. Content must be written from a neutral point of view. Include citations when adding content and consider tagging or removing unsourced information. |
faq page Frequently asked questions
To view an answer, click the link to the right of the question. To view references used by an answer, you must also click the for references at the bottom of the FAQ. Q1: Is there really a scientific consensus on climate change? A1: Yes. The IPCC findings of recent warming as a result of human influence are explicitly recognized as the "consensus" scientific view by the science academies of all the major industrialized countries. No scientific body of national or international standing presently rejects the basic findings of human influence on recent climate. This scientific consensus is supported by over 99% of publishing climate scientists. See also: Scientific consensus on climate change Q2: How can we say climate change is real when it's been so cold in such-and-such a place? A2: This is why it is termed "global warming", not "(such-and-such a place) warming". Even then, what rises is the average temperature over time – that is, the temperature will fluctuate up and down within the overall rising trend. To give an idea of the relevant time scales, the standard averaging period specified by the World Meteorological Organisation (WMO) is 30 years. Accordingly, the WMO defines climate change as "a statistically significant variation in either the mean state of the climate or in its variability, persisting for an extended period (typically decades or longer)." Q3: Can't the increase of CO2 be from natural sources, like volcanoes or the oceans? A3: While these claims are popular among global warming skeptics, including academically trained ones, they are incorrect. This is known from any of several perspectives:
While much of Greenland was and remains under a large ice sheet, the areas of Greenland that were settled by the Norse were coastal areas with fjords that, to this day, remain quite green. You can see the following images for reference:
Arctic sea ice cover is declining strongly; Antarctic sea ice cover has had some much smaller increases, though it may or may not be thinning, and the Southern Ocean is warming. The net global ice-cover trend is clearly downwards. See also: Arctic sea ice decline See also: Antarctic sea ice § Recent trends and climate change Q13: Weren't scientists telling us in the 1970s that the Earth was cooling instead of warming? A13: They weren't – see the article on global cooling. An article in the Bulletin of the American Meteorological Society has reviewed the scientific literature at that time and found that even during the 1970s the prevailing scientific concern was over warming. The common misperception that cooling was the main concern during the 1970s arose from a few studies that were sensationalized in the popular press, such as a short nine-paragraph article that appeared in Newsweek in 1975. (Newsweek eventually apologized for having misrepresented the state of the science in the 1970s.) The author of that article has repudiated the idea that it should be used to deny global warming. Q14: Doesn't water vapour cause 98% of the greenhouse effect? A14: Water vapour is indeed a major greenhouse gas, contributing about 36% to 70% (not 98%) of the total greenhouse effect. But water vapour has a very short atmospheric lifetime (about 10 days), compared with decades to centuries for greenhouse gases like CO2 or nitrous oxide. As a result it is very nearly in a dynamic equilibrium in the atmosphere, which globally maintains a nearly constant relative humidity. In simpler terms, any excess water vapour is removed by rainfall, and any deficit of water vapour is replenished by evaporation from the Earth's surface, which literally has oceans of water. Thus water vapour cannot act as a driver of climate change.Rising temperatures caused by the long-lived greenhouse gases will however allow the atmosphere to hold more vapour. This will lead to an increase in the absolute amount of water vapour in the atmosphere. Since water vapour is itself a greenhouse gas, this is an example of a positive feedback. Thus, whereas water vapour is not a driver of climate change, it amplifies existing trends. See also: Greenhouse gas and Greenhouse effect Q15: Is the fact that other solar system bodies are warming evidence for a common cause (i.e. the sun)? A15: While some solar system bodies show evidence of local or global climate change, there is no evidence for a common cause of warming.
|
This article has not yet been rated on Misplaced Pages's content assessment scale. It is of interest to the following WikiProjects: | ||||||||||||||||||||||||||||||||||||||||||||
Please add the quality rating to the {{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
{{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
{{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
{{WikiProject banner shell}} template instead of this project banner. See WP:PIQA for details.
|
This article has been mentioned by multiple media organizations:
|
Climate change is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Misplaced Pages community. Even so, if you can update or improve it, please do so. | ||||||||||||||||
This article appeared on Misplaced Pages's Main Page as Today's featured article on June 21, 2006. | ||||||||||||||||
| ||||||||||||||||
Current status: Featured article |
There is a request, submitted by AaThinker, for an audio version of this article to be created. For further information, see WikiProject Spoken Misplaced Pages. The rationale behind the request is: "This is a long-time featured article about a vital topic covering several prominent Misplaced Pages projects.". |
Please stay calm and civil while commenting or presenting evidence, and do not make personal attacks. Be patient when approaching solutions to any issues. If consensus is not reached, other solutions exist to draw attention and ensure that more editors mediate or comment on the dispute. |
This is the talk page for discussing improvements to the Climate change article. This is not a forum for general discussion of the article's subject. |
|
Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL |
Archives: Index, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96Auto-archiving period: 21 days |
Please review—submission under models section.
This submission was objected to based on "Has <the> model *really* 'the advantage of accurately demonstrating and predicting effects of the Global Warming phenomenon' ?????" Obviously it has demonstrated the effects of "Global Warming," based on high-school thermo', both global and regional, as for predicting? perhaps this IS stating too much. owever, back in 1985, no one, for example was relating the loss of polar ice to this phenomenon, I don't think I saw anything on the relation until 1995, that was predictive for the time. Since the purpose is to understand GW globally I can soften the statement. Thanks GESICC (talk) 06:25, 3 October 2010 (UTC)GESICC
All models are wrong, some models are useful. Please read...
A model for the phenomenon that yields intuitive results, and using only basic thermodynamics is to at first place the Earth and Sun in a state of thermal equilibrium. For initial understanding, no land masses are included in the model. The Earth can emit or absorb enough heat that it is warm at the equator and cool near the poles, which have ice caps. The total amount of ice remains constant, initially. The power of this model arises when we add a warming phenomenon that then sets the model out of equilibrium; burning wood, ethanol, fossil fuels†, radioactivity, more sunlight etc.. The first effect is not a dramatic increase in the Earth’s temperature (counter-intuitively), but a gradual reduction in the amount of ice near the poles. The glacial run-off, or heat absorbed by the ice melting (specific heat of ice) tends to keep the temperature of the Earth constant. Both of these phenomena have been observed: The non-drastic temperature change, contributing to controversy, is referenced throughout this article. While satellite models and geological surveys have demonstrated reduction in polar ice. The model may be improved by the addition of land masses and geographic features. For example, the nearness of the glaciers in the Pacific Northwest caused a dramatic change in its climate during the 1990’s; unusually cold winters and snow. The continued retreat of the glaciers in recent years has caused a return to its former climate, as glacier water now warms before it reaches the Gulf of Alaska and the Pacific Coast. Another example is provided by the expansion of deserts-directly related to more water being driven from those regions by the increased heat and approach to a new equilibrium. Note that the model predicts non-dramatic temperature change due to Arctic Ice melting, when this ice is gone, new dynamics must replace it. Though simple, this model has the advantage of accurately demonstrating and predicting effects of the Global Warming phenomenon.
†= The burning of fossil fuels is the release of yesterday’s sunshine, effectively adding more sunlight or heat to the Earth.
GESICC (talk) 06:25, 3 October 2010 (UTC)GESICC
- The lack of conventions in your proposal makes it really hard to read. If it's a quote within a quote, please use an apostrophe (I read it as two quotes the first time through); spelling and complete sentences also help. You're talking about why these two edits were reverted. I wasn't the one who reverted you (you should speak to Count Iblis and dave souza for their views), but I can already see several issues. For example, the explanation of thermodynamics reiterates paragraph one, this article is short on space under WP:SIZE, and defending why there needs to be a second explanation will have to be convincing. Nevertheless, if you were to submit this to a professional review, given your experience in a consulting firm, is this what a what a proposal should look like? If I were you, I would rewrite the proposal to explain what it adds to the article (putting the central points in a list helps by the way). -- CaC 155.99.230.104 (talk) 23:27, 3 October 2010 (UTC)
- Your edit engages in original research. You cite a source for the amount of water used to grow things, but it does not follow from that that "irrigation of deserts for farming has increased and redistributed water vapor" - this is merely what you believe happens. You additionally assert as fact that "farming in modern countries has created dead zones in the oceans," but provide no source. Please provide sources for all of your edits. Thanks. Hipocrite (talk) 18:47, 4 October 2010 (UTC)
Revision of 18:40, 4 October 2010 Addition of desert irrigation note
Mr. Souza's objection was that it lacked a reference; provided. Water vapor is a green house gas (qv). Desert farming contributes roughly 5 gallons per ounce of product (http://www.lacfb.org/commodity.pdf). QED, right?GESICC (talk) 18:56, 4 October 2010 (UTC)GESICC
- Your edit engages in original research. You cite a source for the amount of water used to grow things, but it does not follow from that that "irrigation of deserts for farming has increased and redistributed water vapor" - this is merely what you believe happens. You additionally assert as fact that "farming in modern countries has created dead zones in the oceans," but provide no source. Please provide sources for all of your edits. Thanks. Hipocrite (talk) 18:47, 4 October 2010 (UTC)
Hipocrite-You're mixing things up a bit. I do not see that if you move water to places it wasn't previously you are not redistributing it, I don't see how 'belief' enters the equation, it conservation of mass. “Dead zones” is referenced as another wiki-article, with sources, Oxygen dead zones are from the Carbon Dioxide cycle. GESICC (talk) 04:15, 7 October 2010 (UTC)GESICC
- Further, "qed" is not acceptable on wikipedia. Cite a source that says something - your belief it is obvious is not good enough. Hipocrite (talk) 18:58, 4 October 2010 (UTC)
QED-is just an expression. How about replace it with "is that good enough?" If not, it puzzles me what would be, Palmdale water department would report it if it wasn't true--I am not trying to establish water vapor is a GH gas, already done. Establishing it as a local Green House gas is pointless, farming takes 6-9 months minimum, etc..GESICC (talk) 04:15, 7 October 2010 (UTC)GESICC
- Let me add on the substance that the amount of water vapour in the atmosphere is not governed by evaporation alone, but by the balance of evaporation and precipitation. There is good evidence that relative humidity is fairly constant, i.e. the amount of water vapour in the atmosphere is controlled nearly exclusively by the air temperature. --Stephan Schulz (talk) 19:02, 4 October 2010 (UTC)
True, (p/P + p/P +...) = (n/N+n/N...) RT, however, if there is water where there usually isn't the n & p of water is > 0. Piping huge amounts of a green house gas to places that do not normally have it contributes to green house effects, I can't prove this-it’s both a definition and physics. Or as above, if you want me to site a reference for that particular area, well, I can understand that, almost, that's a classical argument, do different laws of physics need to be reproved under different circumstances? Sometimes other variables are involved, after all, but in this case, it is not reasonable to assume other extenuating circumstance, inconceivably large amounts of water are being put into arid environments all over the world. Let me counter-point and ask the gedunkin question; if the equivalent number of moles of CO2 were being released instaed of H2O would you still have the objection? Thanks all, if you still think something is amiss, I'll lock it down. GESICC (talk) 04:15, 7 October 2010 (UTC)GESICC
- The main difference is that atmospheric water has a lifetime of days, while the CO2 cycle operates on the order of centuries to millennia. We can measure that CO2 goes up, and we can measure that, globally, relative humidity very nearly remains constant. There may well be a minor effect, but saying that this is non-negligible is in no way obvious. We do need an explicit source for such a statement - see WP:OR. (And while "dunking" and water go well together, it's a Gedankenexperiment - no worries, I have an unfair advantage there ;-) --Stephan Schulz (talk) 06:38, 7 October 2010 (UTC)
- You're right, CO2's a LLGHG and the net change in water vapor is dependent on temperature (which is relatively constant). However, irrigation and deforestation changes the distribution of water vapor, which may lead to changes in hydrology flow patterns and cycles. I found a article in PNAS that discusses it, what do you guys think? -- CaC 155.99.230.68 (talk) 16:11, 7 October 2010 (UTC)
Stephan-I agree water has a lifetime of days-if we turned off the spigot today, the effects might be gone tomorrow, but until the spigot is turned off, there is a constant source, so half-life simply contributes to the equilibrium of the local environ. Global Humidity may be remaining constant, but we are interested in the local effects of very warm areas, (the heat, because of the humidity scale, may be depressing humidity readings-?). This is also true of CO2; life-time in the environment is not germane so long as there are sources keeping the reaction to the left. Although I can no longer find references, the oceans used to be able to suck up all the CO2 man could hope to produce, not so much anymore, which is why I added a link to Dead Zones (ecology). (It’s ironic we discuss the effect of CO2 production of fossil fuels, more than we discuss the direct contribution of heat from fossil fuels (talk about your short lifetimes, but nobody is turning off the spigot!) try digging up a credible reference for that! Enough fossil fuels get burned every day to melt 400+ cubic meters of water-from waste heat alone!)GESICC (talk) 20:38, 8 October 2010 (UTC)GESICC
- While relevent to our article on Climate change, land use and deforestation, I don't see how this article has much to do with Global warming. Hipocrite (talk) 16:22, 7 October 2010 (UTC)
CaC-Good bit of research, it is a short leap to evaporation from irrigation. Thanks.GESICC (talk) 20:38, 8 October 2010 (UTC)GESICC
- You know GESICC, if you've got no sources, you've got nothing on the table, and we're done. I'd hate to break it to you, your ideas are great, but Misplaced Pages is a tertiary resource and under WP:OR (which is policy), you aren't going to get anywhere. --CaC 155.99.230.93 (talk) 04:32, 9 October 2010 (UTC)
Noted scientist quits association over global warming "fraud"
The following discussion is closed. Please do not modify it. Subsequent comments should be made on the appropriate discussion page. No further edits should be made to this discussion.
A biographical article has now been started about this scientist and a discussion has been started at Talk:List of scientists opposing the mainstream scientific assessment of global warming. It would be inappropriate to add the names of individual dissenting scientists to this article. --TS 18:04, 18 October 2010 (UTC)
This seems relevant http://blogs.telegraph.co.uk/news/jamesdelingpole/100058265/us-physics-professor-global-warming-is-the-greatest-and-most-successful-pseudoscientific-fraud-i-have-seen-in-my-long-life/ 98.118.62.140 (talk) 04:22, 11 October 2010 (UTC)
- A single scientist resigns from a single society over their stance on global warming, and you think it’s relevant for this article? That would be attributing far too much weight to Mr. Lewis. About the only place Mr. Lewis’s opinions would be relevant would be List of scientists opposing the mainstream assessment of global warming. CurtisSwain (talk) 05:41, 11 October 2010 (UTC)
- Coverage of the view of a single physicist in resigning from the APS is not appropriate here; it may conceivably be relevant in several articles such as that noted above or possibly American Physical Society if he was a bigwig in that organization. --TS 08:07, 11 October 2010 (UTC)
Lewis does make a very significant point in that the 'greenhouse gas' theory would require the existence of strong positive-feedback loops within the biosphere. Engineering experience (from numerous disciplines) suggests that such systems are rarely stable enough to exist for more than a short while. The notion that the earth's meteorology has existed for millions of years in the state of a positive-feedback loop is therefore improbable, and this makes the whole 'greenhouse gas' theory very suspect.
If there IS a positive-feedback mechanism at work here, it's the one by which publications stating categorically that global warming is fact rather than theory increase the rate at which such publications appear. It's just like putting a microphone in front of a loudspeaker. --Anteaus (talk) 16:34, 13 October 2010 (UTC)
- As a physicist, he should know that there are a whole slew of rigorous mathematical tools that address stability in feedback systems. If he had identified a problem in this area with the current models, he would have been better off publishing a paper on it, rather than resigning and leaving others to guess what he thinks could be improved. If he publishes something significant, it may have enough effect to get mentioned here. --Nigelj (talk) 16:44, 13 October 2010 (UTC)
- I can't say I agree with Anteaus's argument, as the Earth's climate has not been "stable" for millions of years.
- However, if his description of his actions is accurate, his resignation from the APS is notable; but not sufficiently so for this article. I'd put it in List of scientists opposing the mainstream assessment of global warming (possibly in his own section, as that specific criticism doesn't seem to be there), in global warming skepticism, and in the APS article. — Arthur Rubin (talk) 17:11, 13 October 2010 (UTC)
- According to their web site, APS membership is at an all-time high with over 47,000 members. So, one guy cancels his membership. How is that notable? If a large number of members resigned en mass as a protest, or if Lewis had held an important position in the APS that would be significant, but as far as I can tell, he's just a physicist who disagrees with APS's statement on climate change. BFD.--CurtisSwain (talk) 22:50, 13 October 2010 (UTC)
It says above
- his name has been added to the article List of scientists opposing the mainstream assessment of global warming.
However, that is not true. In fact, the last edit to that page was 7 October 2010. Q Science (talk) 19:31, 18 October 2010 (UTC)
- Actually, it does not say that. AR suggests that it be put there. --Stephan Schulz (talk) 19:40, 18 October 2010 (UTC)
- I've changed the wording. A discussion has been started on the talk page. --TS 19:42, 18 October 2010 (UTC)
- If that's my mistake, I apologize. I suggest he be put there, and, if sufficiently notable, in global warming skepticism and in the APS article. I don't know if he's sufficiently notable, but he probably passes WP:PROF sufficiently to have his own article . — Arthur Rubin (talk) 20:16, 18 October 2010 (UTC)
- I've changed the wording. A discussion has been started on the talk page. --TS 19:42, 18 October 2010 (UTC)
It's pretty obvious that this discussion is off topic here and it's being discussed in two much more appropriate venues, so would anybody mind if I moved this to the archive? --TS 21:55, 18 October 2010 (UTC)
Residence time of CO2?
This article repeats the idea that CO2 residence time is of the order of a hundered years or so but other papers say this not so. See this paper and the supporting cites: "Potential Dependence of Global Warming on the Residence Time (RT) in the Atmosphere of Anthropogenically Sourced Carbon Dioxide" R.H. Essenhigh* Energy Fuels, 2009, 23 (5), pp 2773–2784. The statement of residence time therefore needs correction -right? MarkC (talk) 10:16, 14 October 2010 (UTC)
- No. The Essenhigh paper is badly confused, and its rendition in the blogosphere is worse. The residence time of a given CO2 molecule in the atmosphere is on the order of 4 years (since the total carbon exchange between atmosphere and other reservoirs is ~200 GT/year, and the atmosphere contains ~750GT). But that is not the same as the equilibrium time (how long after a CO2 pulse will it take to revert to normal). We have plenty of research on CO2 lifetimes. I'm sure Boris can point out about 5 publications from the top of his head, and explain this much better. But what is telling is that this paper is not published in any atmospheric science journal, but in one dedicated to fossil fuels... --Stephan Schulz (talk) 11:32, 14 October 2010 (UTC)
I'm sorry but that makes absolutely no sense. For perturbation of an equilibrium, the rate of return is the _sum_ of the forward and back rates. Since the CO2 record shows the seasonal variation the equilibrium time (1/e) cannot be ~100 years. To dismiss a paper and others it cited just because of the title of the Journal title is not scientific nor objective is it? On the other hand, an exponential never returns, so scientists don't characterize the return except in terms of the time const. or half time etc. Thus a 5 year time constant will reach 1- (1/e)^20 of its final value in one hundred years but what's the point of that figure, it's most misleading. Surely we could do with some better description of the assumptions that go into such an estimate or else say there's controversy? Cheers 125.237.187.133 (talk) 12:25, 17 October 2010 (UTC)
- One paper doesn't make a controversy. I suggest that the thing to do here is to read our articles carbon dioxide, carbon dioxide in Earth's atmosphere and carbon cycle and recommend any changes you think should be made to those articles. If you're successful in getting consensus for changes there then it might be time to update this article, in which our coverage should essentially reflect those articles in summary form. --TS 12:30, 17 October 2010 (UTC)
- Hi, it's not just one paper as the reference list in that paper makes clear. BUT even more importantly, the residence time has been measure by 14^C injection following nuclear tests and its not 100 years see: http://cdiac.esd.ornl.gov/trends/co2/well-gr.html. Such direct measurement surely outweighs all modeling studies? MarkC (talk) 12:41, 17 October 2010 (UTC)
- The answer is still the same. Take it to the other articles and get consensus that they're in error and need to be changed, then we can see if this one needs to be updated. --TS 12:43, 17 October 2010 (UTC)
- I had a look at the pages and I could not find a reference to the 100 years... Did I miss it?
- Let me try again. The atmosphere exchanges about 25% of its CO2 per year with much larger reservoirs (especially the oceans). Thus, the time a given CO2 molecule stays in the atmosphere is about 4 years. But the time for the excess CO2 to be removed from the atmosphere is much longer. It's like peeing into a pool. The pee will be diluted pretty soon, so the local concentration will sink very quickly. But the overall level of the pool will only be the same once the extra water has evaporated. --Stephan Schulz (talk) 13:34, 17 October 2010 (UTC)
- Thank you Stephan (although you analogy is worrying ;-P), the problem is not as you suggest. The idea that atmospheric CO2 will take more than ~100 years to appreciably decline after a perturbation is clearly wrong as direct measurements show a faster equilibration (as simple math shows it must be -given the seasonal variations). Perhaps you were unaware of these data? http://cdiac.esd.ornl.gov/trends/co2/well-gr.html This shows that the time course of return to steady state is 10x faster than suggested... Therefore if CO2 production were returned toward preindustrial levels tomorrow (say) the decline in atmospheric CO2 would be as fast as this graph shows -not >100 years. It's not the total C in the system that matters but the atmospheric component -right? MarkC (talk) 09:27, 18 October 2010 (UTC)
- To reiterate (I hope) the basic point, an individual carbon dioxide molecule has an expected lifetime in the atmosphere of 3-4 years; after that it's dissolved in the oceans or by plant respiration or whatever. At the same time biota, various human industrial and agricultural activities and the oceans release carbon dioxide into the atmosphere. However there is a net imbalance in carbon dioxide inputs and outputs in the atmosphere, and this excess in the atmosphere eventually finds its way into the oceans. The distinction you seem to be failing to draw is that between the 3-4 year residency period and that much longer time for the excess carbon dioxide to find its way (primarily) into the oceans. The IP's basic error above seems to have been in this statement: " Since the CO2 record shows the seasonal variation the equilibrium time (1/e) cannot be ~100 years." That's nonsense. It's like saying that since I can stand at the shore and see the waves periodically advancing and receding over a scale of seconds, it's impossible that the tide could take hours to go out. --TS 11:21, 18 October 2010 (UTC)
- Hi TC. Let's try to agree on something: It's not the total C in the system that matters but the atmospheric component -right? If you agree, then its not the time taken for all the C sinks to equilibrate that matter but only the atmospheric component and that, as I have shown and we seem to agree is more like 4-7 years. Thus if CO2 production were stopped tomorrow CO2 will fall with that half time, not 100 years. Do you not agree? 125.237.187.133 (talk) 09:06, 19 October 2010 (UTC)
- I don't see a TC here so I'll assume you meant TS. I still don't see how you get from residence time to equilibrium. You seem to be saying they're identical. --TS 09:33, 19 October 2010 (UTC)
- Hi, it's not just one paper as the reference list in that paper makes clear. BUT even more importantly, the residence time has been measure by 14^C injection following nuclear tests and its not 100 years see: http://cdiac.esd.ornl.gov/trends/co2/well-gr.html. Such direct measurement surely outweighs all modeling studies? MarkC (talk) 12:41, 17 October 2010 (UTC)
NASA image: The World Revs its Heat Engine
NASA's image at Flickr, which is provided with an explanatory caption, might well be edited into this text. "Recently, NASA researchers discovered that incoming solar radiation and outgoing thermal radiation increased in the tropics from the 1980s to the 1990s." The NASA image, dated 2001, might be correlated with contemporary Bush administration public observations about global warming.--Wetman (talk) 14:41, 14 October 2010 (UTC)
The objectivity and accuracy of this page needs advancement.
In reviewing this page, it is clear that only one POV is given. The only mention of serious concerns with the science of Global Warming is in a dismissive and marginalizing way. No mention of the comical errors and practices of the IPCC and it's methods is made. That needs to be presented early and honestly.
This is sad.
Is there anyone there to save Wikiperdia from the marginalization that will happen from this lack of balanced presentation?
If the goal is to be a reliable and authoritative resourse of information, than self interest, political bias, imbalanced and untrue information must be prevented or at least balanced with a complementary and thorough opposition POV.
Please begin to rebalance or clean this lop-sided article today.
If not, Misplaced Pages will not only continue to lose credibility but will become a joke to all but the most imbalanced and lop-sided researchers and a competitor will fill the gap and draw those who want truth and objectivity away.
Thanks-
SeanDeepsean666 (talk) 02:11, 19 October 2010 (UTC)
- Per WP:V, we need reliable sources to include that kind of content, according to its weight. Jesstalk|edits 02:29, 19 October 2010 (UTC)
Wentz 2007: How Much More Rain Will Global Warming Bring?
I've removed this reference to a single paper for now. It was added today by Africangenesis. How well accepted is Wentz? Has it been replicated? Does the paper support the statement in which it is cited? --TS 12:00, 19 October 2010 (UTC)
- The paper proper does mention the discrepancy, but with a few caveats. It does not mention the possible reduction in droughts. --Stephan Schulz (talk) 12:14, 19 October 2010 (UTC)
- Well that's what I'm getting at. It sounds like a reasonable conjecture but I'd like to see if the point about the effect on drought predictions has been made by people who (unlike me) know what they're talking about.
- Would I be right to assume that this paper was accepted for publication too late to make the IPCC AR4 of 2007? --TS 12:22, 19 October 2010 (UTC)
- Copious references, eg. "Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula," Christina L. Hulbea, Ted A. Scambosb, Tim Youngbergc and Amie K. Lambd, Global and Planetary Change, Volume 63, Issue 1, August 2008, Pages 1-8
- Misplaced Pages articles under general sanctions
- Misplaced Pages controversial topics
- All unassessed articles
- FA-Class Weather articles
- Top-importance Weather articles
- Unsorted weather articles
- WikiProject Weather articles
- FA-Class Environment articles
- Unknown-importance Environment articles
- WikiProject Climate change articles
- FA-Class Geology articles
- High-importance Geology articles
- High-importance FA-Class Geology articles
- WikiProject Geology articles
- FA-Class Arctic articles
- High-importance Arctic articles
- WikiProject Arctic articles
- Misplaced Pages pages referenced by the press
- Misplaced Pages featured articles
- Featured articles that have appeared on the main page
- Featured articles that have appeared on the main page once
- Old requests for peer review
- Spoken Misplaced Pages requests