Misplaced Pages

DAB1: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 10:48, 24 March 2007 editCopperKettle (talk | contribs)Autopatrolled, Extended confirmed users10,587 edits wikified ApoER2← Previous edit Revision as of 14:45, 30 March 2007 edit undoBanus (talk | contribs)Extended confirmed users3,391 edits wikilinks, +full refsNext edit →
Line 18: Line 18:
|LocusSupplementaryData=-p31 |LocusSupplementaryData=-p31
}} }}
The '''Disabled-1''' ('''Dab1''') gene encodes a key regulator of ] signaling. Reelin is a large glycoprotein secreted by neurons of the developing brain, particularly ]s. DAB1 functions downstream of Reln in a signaling pathway The '''Disabled-1''' ('''Dab1''') gene encodes a key regulator of ] signaling. Reelin is a large ] secreted by neurons of the developing brain, particularly ]s. DAB1 functions downstream of Reln in a ]
that controls cell positioning in the developing brain and during adult neurogenesis. It docks to the intracellular part of the Reelin very low density lipoprotein receptor (]) and apoE receptor type 2 (]) and becomes tyrosine-phosphorylated following binding of Reelin to cortical neurons. In mice, mutations of Dab1 and Reelin generate identical phenotypes. In humans, Reelin mutations are associated with brain malformations and mental retardation; mutations in DAB1 have not been identified. that controls cell positioning in the developing brain and during adult ]. It docks to the intracellular part of the Reelin very low density ] receptor (]) and apoE receptor type 2 (]) and becomes tyrosine-phosphorylated following binding of Reelin to cortical neurons. In mice, mutations of Dab1 and Reelin generate identical ]s. In humans, Reelin mutations are associated with brain malformations and mental retardation; mutations in DAB1 have not been identified.


With a genomic length of 1.1 Mbp for a coding region of 5.5 kb, Dab1 provides a rare example of genomic complexity, which will impede the identification of human mutations. With a genomic length of 1.1 Mbp for a coding region of 5.5 kb, Dab1 provides a rare example of genomic complexity, which will impede the identification of human mutations.


== Gene function == == Gene function ==
Cortical neurons form in specialized proliferative regions deep in the brain and migrate past previously formed neurons to reach their proper layer. The laminar organization of multiple neuronal types in the cerebral cortex is required for normal cognitive function. The mouse ']' mutation causes abnormal patterns of cortical neuronal migration as well as additional defects in cerebellar development and neuronal positioning in other brain regions. Reelin (RELN; 600514), the reeler gene product, is an extracellular protein secreted by pioneer neurons. The mouse 'scrambler' and ']' recessive mutations exhibit a phenotype identical to that of reeler. Ware et al. (1997) determined that the scrambler phenotype arises from mutations in Dab1, a mouse gene related to the Drosophila gene 'disabled' (dab). Dab encodes a phosphoprotein that binds nonreceptor tyrosine kinases and that has been implicated in neuronal development in flies. Sheldon et al. (1997) found that the yotari phenotype also results from a mutation in the Dab1 gene.<ref name="yotari">Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature. 389(6652):730-3. PMID 9338784</ref> Using in situ hybridization to embryonic day-13.5 mouse brain tissue, they demonstrated that Dab1 is expressed in neuronal populations exposed to reelin. The authors concluded that reelin and Dab1 function as signaling molecules that regulate cell positioning in the developing brain. Howell et al. (1997) showed that targeted disruption of the Dab1 gene disturbed neuronal layering in the cerebral cortex, hippocampus, and cerebellum, causing a reeler-like phenotype Cortical neurons form in specialized proliferative regions deep in the brain and migrate past previously formed neurons to reach their proper layer. The laminar organization of multiple neuronal types in the cerebral cortex is required for normal cognitive function. The mouse ']' mutation causes abnormal patterns of cortical neuronal migration as well as additional defects in cerebellar development and neuronal positioning in other brain regions. Reelin (RELN; 600514), the reeler gene product, is an extracellular protein secreted by ]s. The mouse 'scrambler' and ']' recessive mutations exhibit a phenotype identical to that of reeler. Ware et al. (1997) determined that the scrambler phenotype arises from mutations in Dab1, a mouse gene related to the Drosophila gene 'disabled' (dab).<ref name="ware">{{cite journal |author=Ware M, Fox J, González J, Davis N, Lambert de Rouvroit C, Russo C, Chua S, Goffinet A, Walsh C |title=Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse |journal=Neuron |volume=19 |issue=2 |pages=239-49 |year=1997 |pmid=9292716}}</ref> Dab encodes a ] that binds nonreceptor tyrosine ]s and that has been implicated in neuronal development in flies. Sheldon et al. (1997) found that the yotari phenotype also results from a mutation in the Dab1 gene.<ref name="yotari">Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature. 389(6652):730-3. PMID 9338784</ref> Using ] to embryonic day-13.5 mouse brain tissue, they demonstrated that Dab1 is expressed in neuronal populations exposed to reelin. The authors concluded that reelin and Dab1 function as ]s that regulate cell positioning in the developing brain. Howell et al. (1997) showed that targeted disruption of the Dab1 gene disturbed neuronal layering in the ], ], and ], causing a reeler-like phenotype.<ref name="howell">{{cite journal |author=Howell B, Hawkes R, Soriano P, Cooper J |title=Neuronal position in the developing brain is regulated by mouse disabled-1 |journal=Nature |volume=389 |issue=6652 |pages=733-7 |year=1997 |pmid=9338785}}</ref>


Layering of neurons in the cerebral cortex and cerebellum requires RELN and DAB1. By targeted disruption experiments in mice, Trommsdorff et al. (1999) showed that 2 cell surface receptors, very low density lipoprotein receptor (VLDLR; 192977) and apolipoprotein E receptor-2 (]; 602600), are also required. Both receptors bound Dab1 on their cytoplasmic tails and were expressed in cortical and cerebellar layers adjacent to layers expressing Reln. Dab1 expression was upregulated in knockout mice lacking both the Vldlr and Apoer2 genes. Inversion of cortical layers, absence of cerebellar foliation, and the migration of Purkinje cells in these animals precisely mimicked the phenotype of mice lacking Reln or Dab1. These findings established novel signaling functions for the LDL receptor gene family and suggested that VLDLR and APOER2 participate in transmitting the extracellular RELN signal to intracellular signaling processes initiated by DAB1. Layering of neurons in the cerebral cortex and cerebellum requires RELN and DAB1. By targeted disruption experiments in mice, Trommsdorff et al. (1999) showed that 2 cell surface receptors, very low density lipoprotein receptor (VLDLR; 192977) and ] E receptor-2 (]; 602600), are also required.<ref name="trommsdorff">{{cite journal |author=Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer R, Richardson J, Herz J |title=Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2 |journal=Cell |volume=97 |issue=6 |pages=689-701 |year=1999 |pmid=10380922}}</ref> Both receptors bound Dab1 on their cytoplasmic tails and were expressed in cortical and cerebellar layers adjacent to layers expressing Reln. Dab1 expression was ] in ] lacking both the Vldlr and Apoer2 genes. Inversion of cortical layers, absence of cerebellar foliation, and the migration of ]s in these animals precisely mimicked the phenotype of mice lacking Reln or Dab1. These findings established novel signaling functions for the ] gene family and suggested that VLDLR and APOER2 participate in transmitting the extracellular RELN signal to intracellular signaling processes initiated by DAB1.


In the reeler mouse, the telencephalic neurons (which are misplaced following migration) express approximately 10-fold more DAB1 than their wildtype counterpart. Such an increase in the expression of a protein that virtually functions as a receptor is expected to occur when the specific signal for the receptor is missing. In the reeler mouse, the telencephalic neurons (which are misplaced following migration) express approximately 10-fold more DAB1 than their wildtype counterpart. Such an increase in the expression of a protein that virtually functions as a receptor is expected to occur when the specific signal for the receptor is missing.

Revision as of 14:45, 30 March 2007

disabled homolog 1 (Drosophila)
Identifiers
SymbolDAB1
NCBI gene1600
HGNC2661
OMIM603448
RefSeqNM_021080
UniProtO75553
Other data
LocusChr. 1 p32-p31
Search for
StructuresSwiss-model
DomainsInterPro

The Disabled-1 (Dab1) gene encodes a key regulator of Reelin signaling. Reelin is a large glycoprotein secreted by neurons of the developing brain, particularly Cajal-Retzius cells. DAB1 functions downstream of Reln in a signaling pathway that controls cell positioning in the developing brain and during adult neurogenesis. It docks to the intracellular part of the Reelin very low density lipoprotein receptor (VLDLR) and apoE receptor type 2 (ApoER2) and becomes tyrosine-phosphorylated following binding of Reelin to cortical neurons. In mice, mutations of Dab1 and Reelin generate identical phenotypes. In humans, Reelin mutations are associated with brain malformations and mental retardation; mutations in DAB1 have not been identified.

With a genomic length of 1.1 Mbp for a coding region of 5.5 kb, Dab1 provides a rare example of genomic complexity, which will impede the identification of human mutations.

Gene function

Cortical neurons form in specialized proliferative regions deep in the brain and migrate past previously formed neurons to reach their proper layer. The laminar organization of multiple neuronal types in the cerebral cortex is required for normal cognitive function. The mouse 'reeler' mutation causes abnormal patterns of cortical neuronal migration as well as additional defects in cerebellar development and neuronal positioning in other brain regions. Reelin (RELN; 600514), the reeler gene product, is an extracellular protein secreted by pioneer neurons. The mouse 'scrambler' and 'yotari' recessive mutations exhibit a phenotype identical to that of reeler. Ware et al. (1997) determined that the scrambler phenotype arises from mutations in Dab1, a mouse gene related to the Drosophila gene 'disabled' (dab). Dab encodes a phosphoprotein that binds nonreceptor tyrosine kinases and that has been implicated in neuronal development in flies. Sheldon et al. (1997) found that the yotari phenotype also results from a mutation in the Dab1 gene. Using in situ hybridization to embryonic day-13.5 mouse brain tissue, they demonstrated that Dab1 is expressed in neuronal populations exposed to reelin. The authors concluded that reelin and Dab1 function as signaling molecules that regulate cell positioning in the developing brain. Howell et al. (1997) showed that targeted disruption of the Dab1 gene disturbed neuronal layering in the cerebral cortex, hippocampus, and cerebellum, causing a reeler-like phenotype.

Layering of neurons in the cerebral cortex and cerebellum requires RELN and DAB1. By targeted disruption experiments in mice, Trommsdorff et al. (1999) showed that 2 cell surface receptors, very low density lipoprotein receptor (VLDLR; 192977) and apolipoprotein E receptor-2 (ApoER2; 602600), are also required. Both receptors bound Dab1 on their cytoplasmic tails and were expressed in cortical and cerebellar layers adjacent to layers expressing Reln. Dab1 expression was upregulated in knockout mice lacking both the Vldlr and Apoer2 genes. Inversion of cortical layers, absence of cerebellar foliation, and the migration of Purkinje cells in these animals precisely mimicked the phenotype of mice lacking Reln or Dab1. These findings established novel signaling functions for the LDL receptor gene family and suggested that VLDLR and APOER2 participate in transmitting the extracellular RELN signal to intracellular signaling processes initiated by DAB1.

In the reeler mouse, the telencephalic neurons (which are misplaced following migration) express approximately 10-fold more DAB1 than their wildtype counterpart. Such an increase in the expression of a protein that virtually functions as a receptor is expected to occur when the specific signal for the receptor is missing.

References

  1. Ware M, Fox J, González J, Davis N, Lambert de Rouvroit C, Russo C, Chua S, Goffinet A, Walsh C (1997). "Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse". Neuron. 19 (2): 239–49. PMID 9292716.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature. 389(6652):730-3. PMID 9338784
  3. Howell B, Hawkes R, Soriano P, Cooper J (1997). "Neuronal position in the developing brain is regulated by mouse disabled-1". Nature. 389 (6652): 733–7. PMID 9338785.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer R, Richardson J, Herz J (1999). "Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2". Cell. 97 (6): 689–701. PMID 10380922.{{cite journal}}: CS1 maint: multiple names: authors list (link)

External links

Categories:
DAB1: Difference between revisions Add topic